
 UNIX PROGRAMMER’S MANUAL

 Third Edition

 K. Thompson

 D. M. Ritchie

 February, 1973

 Copyright 8c9 1972
 Bell Telephone Laboratories, Inc.

 No part of this document may be reproduced,
 or distributed outside the Laboratories, without
 the written permission of Bell Telephone Laboratories.

 PREFACE
 to the Third Edition

In the months since the last appearance of this manual, many
changes have occurred both in the system itself and in the
way it is used.

Perhaps most obviously, there have been additions, dele-
tions, and modifications to the system and its software. It
is these changes, of course, that caused the appearance of
this revised manual.

Second, the number of people spending an appreciable amount
of time writing UNIX software has increased. Credit is due
to L. L. Cherry, M. D. McIlroy, L. E. McMahon, R. Morris,
J. F. Ossanna, and E. N. Pinson for their contributions.

Finally, the number of UNIX installations has grown to 16,
with more expected. None of these has exactly the same com-
plement of hardware or software. Therefore, at any particu-
lar installation, it is quite possible that this manual will
give inappropriate information.

In particular, _a_n_y _s_y_s_t_e_m _w_h_i_c_h _u_s_e_s _a _P_D_P_-_1_1_/_2_0 _p_r_o_c_e_s_s_o_r
_w_i_l_l _n_o_t _i_n_c_l_u_d_e _a_l_l _t_h_e _s_o_f_t_w_a_r_e _d_e_s_c_r_i_b_e_d _h_e_r_e_i_n_, _n_o_r _w_i_l_l
_t_h_e _s_o_f_t_w_a_r_e _b_e_h_a_v_e _t_h_e _s_a_m_e _w_a_y_. The second, or even the
first, edition of this manual is likely to be more appropri-
ate.

Besides additions, deletions, and modifications to the
writeups in each section, this manual differs from its pre-
decessors in two ways: all the commands used for system
maintenance and not intended for normal users have been
moved to a new section VIII; and there is a new "How to Get
Started" chapter that gives some elementary facts and many
pointers to other sections.

 -- iiii --

 INTRODUCTION TO THIS MANUAL

This manual gives descriptions of the publicly available
features of UNIX. It provides neither a general overview
(see "The UNIX Time-sharing System" for that) nor details of
the implementation of the system (which remain to be dis-
closed).

Within the area it surveys, this manual attempts to be as
complete and timely as possible. A conscious decision was
made to describe each program in exactly the state it was in
at the time its manual section was prepared. In particular,
the desire to describe something as it should be, not as it
is, was resisted. Inevitably, this means that many sections
will soon be out of date. (The rate of change of the system
is so great that a dismayingly large number of early sec-
tions had to be modified while the rest were being written.
The unbounded effort required to stay up-to-date is best
indicated by the fact that several of the programs described
were written specifically to aid in preparation of this man-
ual!)

This manual is divided into eight sections:

 I. Commands
 II. System calls
 III. Subroutines
 IV. Special files
 V. File formats
 VI. User-maintained programs
 VII. Miscellaneous
 VIII. Maintenance

Commands are programs intended to be invoked directly by the
user, in contradistinction to subroutines, which are
intended to be called by the user’s programs. Commands gen-
erally reside in directory /_b_i_n_ (for b_i_n_ary programs). This
directory is searched automatically by the command line
interpreter. Some programs classified as commands are
located elsewhere; this fact is indicated in the appropriate
sections.

System calls are entries into the UNIX supervisor. In
assembly language, they are coded with the use of the opcode
"sys", a synonym for the t_r_a_p_ instruction.

A small assortment of subroutines is available; they are
described in section III. The binary form of most of them
is kept in the system library /usr/lib/liba.a.

 -- iiiiii --

The special files section IV discusses the characteristics
of each system "file" which actually refers to an I/O
device. Unlike previous editions, the names in this section
refer to the DEC device names for the hardware, instead of
the neames of the special files themselves.

The file formats section V documents the structure of par-
ticular kinds of files; for example, the form of the output
of the loader and assembler is given. Excluded are files
used by only one command, for example the assembler’s inter-
mediate files.

User-maintained programs (section VI) are not considered
part of the UNIX system, and the principal reason for list-
ing them is to indicate their existence without necessarily
giving a complete description. The author should be con-
sulted for information.

The miscellaneous section (VII) gathers odds and ends.

Section VIII discusses commands which are not intended for
use by the ordinary user, in some cases because they dis-
close information in which he is presumably not interested,
and in others because they perform privileged functions.

Each section consists of a number of independent entries of
a page or so each. The name of the entry is in the upper
corners of its pages, its preparation date in the upper mid-
dle. Entries within each section are alphabetized. The
page numbers of each entry start at 1. (The earlier hope
for frequent, partial updates of the manual is clearly in
vain, but in any event it is not feasible to maintain con-
secutive page numbering in a document like this.)

All entries have a common format.

 The n_a_m_e_ section repeats the entry name and gives a
 very short description of its purpose.

 The s_y_n_o_p_s_i_s_ summarizes the use of the program being
 described. A few conventions are used, particularly in
 the Commands section:

 Underlined words are considered literals, and are
 typed just as they appear.

 Square brackets ([]) around an argument indicate
 that the argument is optional. When an argument is
 given as "name", it always refers to a file name.

 Ellipses "..." are used to show that the previous
 argument-prototype may be repeated.

 -- iivv --

 A final convention is used by the commands them-
 selves. An argument beginning with a minus sign "-"
 is often taken to mean some sort of flag argument
 even if it appears in a position where a file name
 could appear. Therefore, it is unwise to have files
 whose names begin with "-".

 The d_e_s_c_r_i_p_t_i_o_n_ section discusses in detail the subject
 at hand.

 The f_i_l_e_s_ section gives the names of files which are
 built into the program.

 A s_e_e_ a_l_s_o_ section gives pointers to related informa-
 tion.

 A d_i_a_g_n_o_s_t_i_c_s_ section discusses the diagnostics that
 may be produced. This section tends to be as terse as
 the diagnostics themselves.

 The b_u_g_s_ section gives known bugs and sometimes defi-
 ciencies. Occasionally also the suggested fix is
 described.

Previous edition of this manual had an o_w_n_e_r_ section, which
has been dropped from this edition because the "owners" of
many routines became fairly hard to pin down. The major
contributors to UNIX, (cast in order of appearance) together
with their login names and most notable contributions, are

 ken K. Thompson (UNIX, many commands)
 dmr D. M. Ritchie (many commands, as, ld, C)
 jfo J. F. Ossanna (roff, nroff)
 doug M. D. McIlroy (tmg, m6)
 rhm R. Morris (dc, much of library)
 lem L. E. McMahon (cref)
 llc L. L. Cherry (form, fed, salloc)
 csr C. S. Roberts (tss)
 enp E. N. Pinson (proof)

At the beginning of this document is a table of contents,
organized by section and alphabetically within each section.
There is also a permuted index derived from the table of
contents. Within each index entry, the title of the writeup
to which it refers is followed by the appropriate section
number in parentheses. This fact is important because there
is considerable name duplication among the sections, arising
principally from commands which exist only to exercise a
particular system call.

This manual was prepared using the UNIX text editor e_d_ and
the formatting program r_o_f_f_.

 -- vv --

The assistance of R. Morris is gratefully acknowledged.

 -- vvii --

 HOW TO GET STARTED

This section provides the basic information you need to get
started on UNIX: how to log in and log out, how to communi-
cate through your terminal, and how to run a program.

_L_o_g_g_i_n_g _i_n

You must call UNIX from an appropriate terminal. UNIX sup-
ports ASCII terminals typified by the TTY 37, the GE Ter-
minet 300, the Memorex 1240, and various graphical terminals
on the one hand, and IBM 2741-type terminals on the other.

To use UNIX, you must have a valid UNIX user name, which may
be obtained, together with the telephone number, from the
system administrators.

The same telephone number serves terminals operating at all
the standard speeds. After a data connection is estab-
lished, the login procedure depends on what kind of terminal
you are using.

 _T_T_Y _3_7 _t_e_r_m_i_n_a_l

 UNIX will type out "login: "; you respond with your
 user name. From the TTY 37 terminal, and any other
 which has the "new-line" function (combined carriage
 return and linefeed), terminate each line you type with
 the "new line" key (n_o_t_ the "return" key).

 _3_0_0_-_b_a_u_d _t_e_r_m_i_n_a_l_s

 Such terminals include the GE Terminet 300, most dis-
 play terminals, Execuport, TI, and certain Anderson-
 Jacobson terminals. These terminals generally have a
 speed switch which should be set at "300" (or "30" for
 30 characters per second) and a half/full duplex switch
 which should be set at full-duplex. (Note that this
 switch will often have to be changed since MH-TSS
 requires half-duplex). When a connection with UNIX is
 established, a few garbage characters are typed (the
 login message at the wrong speed). Depress the "break"
 key; this is a speed-independent signal to UNIX that a
 300-baud terminal is in use. UNIX will type "login: "
 at the correct speed; you type your user name, followed
 by the "return" key. Henceforth, the "return", "new
 line", or "linefeed" keys will give exactly the same
 results. Each line must be terminated with one of
 these keys; no one is listening to you until the return
 is received.

 -- vviiii --

 _S_e_l_e_c_t_r_i_c _t_e_r_m_i_n_a_l_s

 From an IBM 2741 or the Anderson-Jacobson Selectric
 terminal, no message will appear. After the data con-
 nection is established, press the "return" key. UNIX
 should type "login: " as described above. If the
 greeting does not appear after a few seconds, unlock
 the keyboard by switching the terminal to local and
 back to remote, and type "return". If necessary, hang
 up and try again; something has gone wrong.

For all these terminals, it is important that you type your
name in lower case if possible; if you type upper case let-
ters, UNIX will assume that your terminal cannot generate
lower-case letters and will translate all subsequent upper-
case letters to lower case.

The evidence that you have successfully logged in is that a
UNIX program, the Shell, will type a "%" to you. (The Shell
is described below under "How to run a program".

For more information, consult getty(VII), which discusses
the login sequence in more detail, and dc(IV), which dis-
cusses typewriter I/O.

_L_o_g_g_i_n_g _o_u_t

There are three ways to log out:

 You can simply hang up the phone. Hanging up is safe
 if you are at command level, that is, if the Shell has
 just typed its prompt signal "%". It is also safe if
 you are in interactive system programs, for example the
 editor. It is unsafe if you are executing a non-inter-
 active program, or one of your own programs, which
 either does not read the typewriter or ignores the end-
 of-file indications which will result from hanging up.
 The reason is that UNIX, unlike most systems, does not
 terminate a program simply because it has been hung-up
 upon.

 You can log out by typing an end-of-file indication
 (EOT character, control "d") to the Shell. The Shell
 will terminate and the "login: " message will appear
 again.

 You can also log in directly as another user by giving
 a login command (login (I)).

_H_o_w _t_o _c_o_m_m_u_n_i_c_a_t_e _t_h_r_o_u_g_h _y_o_u_r _t_e_r_m_i_n_a_l

When you type to UNIX, a gnome deep in the system is gather-
ing your characters and saving them in a secret place. The

 -- vviiiiii --

characters will not be given to a program until you type a
return, as described above in _L_o_g_g_i_n_g _i_n_.

UNIX typewriter I/O is full-duplex (except for Selectric
terminals). It has full read-ahead, which means that you
can type at any time, even while a program is typing at you.
Of course, if you type during output, the output will have
the input characters interspersed. However, whatever you
type will be saved up and interpreted in correct sequence.

There is a limit to the amount of read-ahead, but it is gen-
erous and not likely to be exceeded unless the system is in
trouble. When the read-ahead limit is exceeded, the system
stops echoing input characters, and starts echoing "#" no
matter what you typed. The last character which was echoed
correctly will be received correctly by the program to which
you were talking; subsequent characters have been thrown
away.

On a typewriter input line, the character "@" kills all the
characters typed before it, so typing mistakes can be
repaired on a single line. Also, the character "#" erases
the last character typed. Successive uses of "#" erase
characters back to, but not beyond, the beginning of the
line. "@" and "#" can be transmitted to a program by pre-
ceding them with "\". (So, to erase "\", you need two
"#"s).

The ASCII "delete" (a.k.a. "rubout") character is not passed
to programs but instead generates an _i_n_t_e_r_r_u_p_t _s_i_g_n_a_l_. This
signal generally causes whatever program you are running to
terminate. It is typically used to stop a long printout
that you don’t want. However, programs can arrange either
to ignore this signal altogether, or to be notified when it
happens (instead of being terminated). The editor, for
example, catches interrupts and stops what it is doing,
instead of terminating, so that an interrupt can be used to
halt an editor printout without losing the file being
edited.

The q_u_i_t_ signal is generated by typing the ASCII FS charac-
ter. It not only causes a running program to terminate but
also generates a file with the core image of the terminated
process. Quit is useful for debugging.

Besides adapting to the speed of the terminal, UNIX tries to
be intelligent about whether you have a terminal with the
"new line" function or whether it must be simulated with
carriage-return and line-feed. In the latter case, all
input carriage returns are turned to new-line characters
(the standard line delimiter) and both a carriage return and
a line feed are echoed to the terminal. If you get into the
wrong mode, the stty command (I) will rescue you.

 -- iixx --

Tab characters are used freely in UNIX source programs. If
your terminal does not have the tab function, you can
arrange to have them turned into spaces during output, and
echoed as spaces during input. The system assumes that tabs
are set every eight columns. Again, the stty command (I)
will set or reset this mode. Also, there is a file which,
if printed on TTY 37 or TermiNet 300 terminals, will set the
tab stops correctly (tabs(VII)).

Section dc(IV) discusses typewriter I/O more fully. Section
kl(IV) discusses the console typewriter.

_H_o_w _t_o _r_u_n _a _p_r_o_g_r_a_m_; _T_h_e _S_h_e_l_l

When you have successfully logged into UNIX, a program
called the Shell is listening to your terminal. The Shell
reads typed-in lines, splits them up into a command name and
arguments, and executes the command. A command is simply an
executable program. The Shell looks first in your current
directory (see next section) for a program with the given
name, and if none is there, then in a system directory.
There is nothing special about system-provided commands
except that they are kept in a directory where the Shell can
find them.

The command name is always the first word on an input line;
it and its arguments are separated from one another by spa-
ces.

When a program terminates, the Shell will ordinarily regain
control and type a "%" at you to indicate that it is ready
for another command.

The Shell has many other capabilities, which are described
in detail in section sh(I).

_T_h_e _c_u_r_r_e_n_t _d_i_r_e_c_t_o_r_y

UNIX has a file system arranged in a hierarchy of directo-
ries. When the system administrator gave you a user name,
he also created a directory for you (ordinarily with the
same name as your user name). When you log in, any file
name you type is by default in this directory. Since you
are the owner of this directory, you have full permissions
to read, write, alter, or destroy its contents. Permissions
to have your will with other directories and files will have
been granted or denied to you by their owners. As a matter
of observed fact, few UNIX users protect their files from
destruction, let alone perusal, by other users.

To change the current directory (but not the set of permis-
sions you were endowed with at login) use chdir(I).

 -- xx --

_P_a_t_h _n_a_m_e_s

To reference files not in the current directory, you must
use a path name.

Full path names begin with "/", the name of the root direc-
tory of the whole file system. After the slash comes the
name of each directory containing the next sub-directory
(followed by a "/") until finally the file name is reached.
E.g.: "/usr/lem/filex" refers to file "filex" in directory
"lem"; "lem" is itself a sub-directory of "usr"; "usr"
springs directly from the root directory.

If your current directory has subdirectories, the path names
of files therein begin with the name of the subdirectory (no
prefixed "/").

Without important exception, a path name may be used any-
where a file name is required.

Important commands which modify the contents of files are
cp(I), mv(I), and rm(I), which respectively copy, move (i.e.
rename) and remove files. To find out the status of files
or directories, use ls(I) and stat(I). See mkdir(I) for
making directories; rmdir(I) for destroying them.

For a fuller discussion of the file system, see
MM-71-1273-4. It may also be useful to glance through sec-
tion II of this manual, which discusses system calls, even
if you don’t intend to deal with the system at the assembly-
language level.

_W_r_i_t_i_n_g _a _p_r_o_g_r_a_m

To enter the text of a source program into a UNIX file, use
ed(I). The three principal languages in UNIX are assembly
language (see as(I)), Fortran (see fc(I)), and C (see
cc(I)). After the program text has been entered through the
editor and written on a file, you can give the file to the
appropriate language processor as an argument. The output
of the language processor will be left on a file in the cur-
rent directory named "a.out". (If the output is precious,
use mv to move it to a less exposed name soon.) If you
wrote in assembly language, you will probably need to load
the program with library subroutines; see ld(I). The other
two language processors call the loader automatically.

When you have finally gone through this entire process with-
out provoking any diagnostics, the resulting program can be
run by giving its name to the Shell in response to the "%"
prompt.

The next command you will need is db(I). As a debugger, db

 -- xxii --

is better than average for assembly-language programs,
marginally useful for C programs (when completed, cdb(I)
will be a boon), and virtually useless for Fortran.

Your programs can receive arguments from the command line
just as system programs do. For assembly language programs,
see exec(II).

_T_e_x_t _p_r_o_c_e_s_s_i_n_g

Almost all text is entered through the editor. The commands
most often used to write text on a terminal are: cat(I),
pr(I), roff(I), or nroff(I).

The cat command simply dumps ASCII text on the terminal,
with no processing at all. The pr command paginates the
text and supplies headings. The nroff command is an elabo-
rate text formatting program, and requires careful fore-
thought in entering both the text and the formatting com-
mands into the input file. The roff command is a somewhat
less elaborate formatting program, and requires somewhat
less forethought.

_S_u_r_p_r_i_s_e_s

Certain commands provide inter-user communication. Even if
you do not plan to use them, it would be well to learn some-
thing about them, because someone else may aim them at you.

To communicate with another user currently logged in,
write(I) is used. To leave a message the presence of which
will be announced to another user when he next logs in,
mail(I) is used. The write-ups in the manual also suggest
how to respond to the two commands if you are a target.

When you log in, a message-of-the-day may greet you before
the first "%".

 -- xxiiii --

 TABLE OF CONTENTS

I. COMMANDS

: place label
ar archive (combine) files
as assembler
bas BASIC dialect
cat concatenate (or print) files
cc compile C program
cdb C debugger
chdir change working directory
chmod change access mode of files
chown change owner of files
cmp compare file contents
cp copy file
cref cross reference table
crypt encrypt, decrypt a file
date get date and time of day
db symbolic debugger
dc desk calculator
df find free disk space
dsw delete files interactively
du find disk usage
echo print command arguments
ed text editor
exit end command sequence
factor factor a number
fc compile Fortran program
fed form letter editor
form generate form letter
forml generate form letters
goto command transfer
hyphen find hyphenated words
if conditional command
ld link editor (loader)
ln link to file
login log on to system
ls list contents of directory
m6 macroprocessor
mail send mail to another user
man run off manual section
mesg permit or deny messages
mkdir create directory
mt save, restore files on magtape
mv move or rename file
nm print namelist
nroff format text for printing
od octal dump of file
opr print file off-line
ov page overlay file print
passwd set login password

 -- xxiiiiii --

pr print file with headings
proof compare text files
reloc relocate object files
rew rewind DECtape
rm remove (delete) file
rmdir remove (delete) directory
roff format text for printing
sh command interpreter
size get executable program size
sno compile Snobol program
sort sort ASCII file
speak send words to voice synthesizer
split break a file into pieces
stat get file status
strip remove symbols, relocation bits
stty set typewriter modes
sum sum file
tap save, restore files on DECtape
time get time information
tmg compile tmgl program
tss communicate with MH-TSS (GCOS)
tty find name of terminal
type print file page-by-page
typo find typographic errors
un find undefined symbols
uniq find duplicate lines in a file
vs generate voice synthesizer phonemes
wc get (English) word count
who who is on the system
write write to another user

II. SYSTEM CALLS

boot reboot the system
break set program break
cemt catch EMT traps
chdir change working directory
chmod change mode of file
chown change owner of file
close close open file
creat create file
csw read the console switches
dup duplicate an open file
exec execute program file
exit terminate execution
fork create new process
fpe catch floating exception errors
fstat status of open file
getuid get user ID
gtty get typewriter mode
ilgins catch illegal instruction trap
intr catch or inhibit interrupts

 -- xxiivv --

kill destroy process
link link to file
makdir create directory
mdate set date modified of file
mount mount file system
nice set low-priority status
open open file
pipe open inter process channel
quit inhibit quits
read read file
rele release processor
seek move read or write pointer
setuid set user ID
sleep delay execution
stat get file status
stime set system time
stty set mode of typewriter
sync assure synchronization
time get time of year
times get execution times
umount dismount file system
unlink remove (delete) file
wait wait for process
write write file

III. SUBROUTINES

atan arctangent
atof convert ASCII to floating
atoi convert ASCII to integer
compar string compare for sort
crypt encrypt according to a keyword
ctime convert time to ASCII
ddsput display character on Picturephone
ecvt edited output conversion
exp exponential function
ftoa convert floating to ASCII
ftoo convert floating to octal
gerts communicate with GCOS
getc get character
hypot compute hypotenuse
itoa convert integer to ASCII
log logarithm base e
mesg print string on typewriter
nlist read name list
pow take powers of numbers
ptime print time
putc write character or word
qsort quicker sort
rand pseudo random number generator
salloc storage allocator
sin sine, cosine

 -- xxvv --

sqrt square root
switch transfer depending on value
ttyn find teletype name

IV. SPECIAL FILES

dc remote typewriter
dn 801 ACU
dp 201 Dataphone
kl console typewriter
mem core memory
pc punched paper tape
rf RF disk
rk RK disk
tc DECtape
tm............................ 9-track magtape
vt storage-tube display

V. FILE FORMATS

a.out assembler and loader output
archive archive file
core core image file
directory directory format
file system file system format
passwd password file
tap DECtape and magtape format
utmp logged-in user information
wtmp accounting files

VI. USER MAINTAINED PROGRAMS

bc compile B program
bj blackjack
ptx permuted index
yacc yet another compiler-compiler

VII. MISCELLANEOUS

ascii map of ASCII
dpd spawn dataphone daemon
getty adapt to typewriter
glob argument expander
greek extended TTY 37 typebox map
init initializer process
msh mini Shell
tabs set tab stops on typewriter
vsp voice synthesizer phonemes

 -- xxvvii --

VIII. SYSTEM MAINTAINANCE

20boot reboot 11/20 system
acct get connect-time accounting
bproc boot procedure
check check consistency of file system
chk check all file systems
clri clear file’s i-node
dcheck verify directory hierarchy
dli load DEC binary paper tapes
istat file status by i-number
kill terminate a process
mount mount removable file system
ps get process status
salv repair damaged file system
su become super-user
swtmp truncate accounting files
tm get system time information
umount dismount removable file system

 -- xxvviiii --

 INDEX

 20boot(VIII): reboot 11/20 system
 dp(IV): 201 Dataphone
 20boot(VIII): reboot 11/20 system
 greek(VII): extended TTY 37 typebox map
 dn(IV): 801 ACU
 tm 9-track magtape
 :(I): place label
 a.out(V): assembler and loader output
 chmod(I): change access mode of files
 crypt(III): encrypt according to a keyword
 wtmp(V): accounting files
 acct(VIII): get connect-time accounting
 acct(VIII): get connect-time accounting
 dn(IV): 801 ACU
 getty(VII): adapt to typewriter
 chk(VIII): check all file systems
 salloc(III): storage allocator
 dup(II): duplicate an open file
 yacc(VI): yet another compiler-compiler
 mail(I): send mail to another user
 write(I): write to another user
 ar(I): archive (combine) files
 archive(V): archive file
 archive(V): archive file
 atan(III): arctangent
 glob(VII): argument expander
 echo(I): print command arguments
 ar(I): archive (combine) files
 sort(I): sort ASCII file
 atof(III): convert ASCII to floating
 atoi(III): convert ASCII to integer
 ascii(VII): map of ASCII
 ascii(VII): map of ASCII
 ctime(III): convert time to ASCII
 convert floating to ASCII...ftoa(III):
 itoa(III): convert integer to ASCII
 as(I): assembler
 a.out(V): assembler and loader output
 as(I): assembler
 sync(II): assure synchronization
 atan(III): arctangent
 atof(III): convert ASCII to floating
 atoi(III): convert ASCII to integer
 bc(VI): compile B program
 log(III): logarithm base e
 bas(I): BASIC dialect
 bas(I): BASIC dialect
 bc(VI): compile B program
 dli(VIII): load DEC binary paper tapes

 -- xxvviiiiii --

 remove symbols, relocation bits...strip(I):
 bj(VI): blackjack
 bj(VI): blackjack
 bproc(VIII): boot procedure
 boot(II): reboot the system
 bproc(VIII): boot procedure
 split(I): break a file into pieces
 break(II): set program break
 break(II): set program break
 istat(VIII): file status by i-number
 cdb(I): C debugger
 cc(I): compile C program
 dc(I): desk calculator
 cemt(II): catch EMT traps
 fpe(II): catch floating exception errors
 ilgins(II): catch illegal instruction trap
 intr(II): catch or inhibit interrupts
 cat(I): concatenate (or print) files
 cc(I): compile C program
 cdb(I): C debugger
 cemt(II): catch EMT traps
 chmod(I): change access mode of files
 chmod(II): change mode of file
 chown(I): change owner of files
 chown(II): change owner of file
 chdir(I): change working directory
 chdir(II): change working directory
 pipe(II): open inter process channel
 ddsput(III): display character on Picturephone
 putc(III): write character or word
 getc(III): get character
 chdir(I): change working directory
 chdir(II): change working directory
 chk(VIII): check all file systems
 check(VIII): check consistency of file system
 system... check(VIII): check consistency of file
 chk(VIII): check all file systems
 chmod(I): change access mode of files
 chmod(II): change mode of file
 chown(I): change owner of files
 chown(II): change owner of file
 clri(VIII): clear file’s i-node
 close(II): close open file
 close(II): close open file
 clri(VIII): clear file’s i-node
 cmp(I): compare file contents
 ar(I): archive (combine) files
 echo(I): print command arguments
 sh(I): command interpreter
 exit(I): end command sequence
 goto(I): command transfer
 if(I): conditional command
 gerts(III): communicate with GCOS

 -- xxiixx --

 tss(I): communicate with MH-TSS (GCOS)
 cmp(I): compare file contents
 compar(III): string compare for sort
 proof(I): compare text files
 compar(III): string compare for sort
 bc(VI): compile B program
 cc(I): compile C program
 fc(I): compile Fortran program
 sno(I): compile Snobol program
 tmg(I): compile tmgl program
 yacc(VI): yet another compiler-compiler
 hypot(III): compute hypotenuse
 cat(I): concatenate (or print) files
 if(I): conditional command
 acct(VIII): get connect-time accounting
 check(VIII): check consistency of file system
 csw(II): read the console switches
 kl(IV): console typewriter
 ls(I): list contents of directory
 cmp(I): compare file contents
 ecvt(III): edited output conversion
 atof(III): convert ASCII to floating
 atoi(III): convert ASCII to integer
 ftoa(III): convert floating to ASCII
 ftoo(III): convert floating to octal
 itoa(III): convert integer to ASCII
 ctime(III): convert time to ASCII
 cp(I): copy file
 core(V): core image file
 mem(IV): core memory
 core(V): core image file
 sin(III): sine, cosine
 wc(I): get (English) word count
 cp(I): copy file
 makdir(II): create directory
 mkdir(I): create directory
 creat(II): create file
 fork(II): create new process
 creat(II): create file
 cref(I): cross reference table
 cref(I): cross reference table
 crypt(I): encrypt, decrypt a file
 crypt(III): encrypt according to a keyword
 csw(II): read the console switches
 ctime(III): convert time to ASCII
 dpd(VII): spawn dataphone daemon
 salv(VIII): repair damaged file system
 dpd(VII): spawn dataphone daemon
 dp(IV): 201 Dataphone
 date(I): get date and time of day
 mdate(II): set date modified of file
 date(I): get date and time of day
 date(I): get date and time of day

 -- xxxx --

 db(I): symbolic debugger
 dcheck(VIII): verify directory hierarchy
 dc(I): desk calculator
 dc(IV): remote typewriter
 Picturephone... ddsput(III): display character on
 cdb(I): C debugger
 db(I): symbolic debugger
 dli(VIII): load DEC binary paper tapes
 crypt(I): encrypt, decrypt a file
 tap(V): DECtape and magtape format
 rew(I): rewind DECtape
 save, restore files on DECtape...tap(I):
 tc(IV): DECtape
 sleep(II): delay execution
 dsw(I): delete files interactively
 rmdir(I): remove (delete) directory
 rm(I): remove (delete) file
 unlink(II): remove (delete) file
 mesg(I): permit or deny messages
 switch(III): transfer depending on value
 dc(I): desk calculator
 kill(II): destroy process
 df(I): find free disk space
 bas(I): BASIC dialect
 directory(V): directory format
 dcheck(VIII): verify directory hierarchy
 directory(V): directory format
 chdir(I): change working directory
 chdir(II): change working directory
 ls(I): list contents of directory
 makdir(II): create directory
 mkdir(I): create directory
 rmdir(I): remove (delete) directory
 df(I): find free disk space
 du(I): find disk usage
 rf(IV): RF disk
 rk(IV): RK disk
 umount(II): dismount file system
 ddsput(III): display character on Picturephone
 vt(IV): storage-tube display
 dli(VIII): load DEC binary paper tapes
 dn(IV): 801 ACU
 dpd(VII): spawn dataphone daemon
 dp(IV): 201 Dataphone
 dsw(I): delete files interactively
 du(I): find disk usage
 od(I): octal dump of file
 dup(II): duplicate an open file
 dup(II): duplicate an open file
 uniq(I): find duplicate lines in a file
 echo(I): print command arguments
 ecvt(III): edited output conversion
 ed(I): text editor

 -- xxxxii --

 ecvt(III): edited output conversion
 ld(I): link editor (loader)
 ed(I): text editor
 fed(I): form letter editor
 cemt(II): catch EMT traps
 crypt(III): encrypt according to a keyword
 crypt(I): encrypt, decrypt a file
 exit(I): end command sequence
 wc(I): get (English) word count
 catch floating exception errors...fpe(II):
 typo(I): find typographic errors
 fpe(II): catch floating exception errors
 exec(II): execute program file
 size(I): get executable program size
 exec(II): execute program file
 times(II): get execution times
 exit(II): terminate execution
 sleep(II): delay execution
 exit(I): end command sequence
 exit(II): terminate execution
 glob(VII): argument expander
 exp(III): exponential function
 exp(III): exponential function
 greek(VII): extended TTY 37 typebox map
 log(III): logarithm base e
 factor(I): factor a number
 factor(I): factor a number
 fc(I): compile Fortran program
 fed(I): form letter editor
 cmp(I): compare file contents
 split(I): break a file into pieces
 opr(I): print file off-line
 type(I): print file page-by-page
 ov(I): page overlay file print
 istat(VIII): file status by i-number
 stat(I): get file status
 stat(II): get file status
 file system(V): file system format
 chk(VIII): check all file systems
 file system(V): file system format
 check consistency of file system...check(VIII):
 mount(II): mount file system
 mount(VIII): mount removable file system
 salv(VIII): repair damaged file system
 umount(II): dismount file system
 pr(I): print file with headings
 clri(VIII): clear file’s i-node
 dsw(I): delete files interactively
 tap(I): save, restore files on DECtape
 mt(I): save, restore files on magtape
 ar(I): archive (combine) files
 concatenate (or print) files...cat(I):
 change access mode of files...chmod(I):

 -- xxxxiiii --

 chown(I): change owner of files
 proof(I): compare text files
 reloc(I): relocate object files
 wtmp(V): accounting files
 archive(V): archive file
 chmod(II): change mode of file
 chown(II): change owner of file
 close(II): close open file
 core(V): core image file
 cp(I): copy file
 creat(II): create file
 crypt(I): encrypt, decrypt a file
 dup(II): duplicate an open file
 exec(II): execute program file
 fstat(II): status of open file
 link(II): link to file
 ln(I): link to file
 set date modified of file...mdate(II):
 mv(I): move or rename file
 od(I): octal dump of file
 open(II): open file
 passwd(V): password file
 read(II): read file
 rm(I): remove (delete) file
 sort(I): sort ASCII file
 sum(I): sum file
 find duplicate lines in a file...uniq(I):
 unlink(II): remove (delete) file
 write(II): write file
 du(I): find disk usage
 uniq(I): find duplicate lines in a file
 df(I): find free disk space
 hyphen(I): find hyphenated words
 tty(I): find name of terminal
 ttyn(III): find teletype name
 typo(I): find typographic errors
 un(I): find undefined symbols
 fpe(II): catch floating exception errors
 ftoa(III): convert floating to ASCII
 ftoo(III): convert floating to octal
 atof(III): convert ASCII to floating
 fork(II): create new process
 fed(I): form letter editor
 forml(I): generate form letters
 form(I): generate form letter
 nroff(I): format text for printing
 roff(I): format text for printing
 directory(V): directory format
 file system(V): file system format
 tap(V): DECtape and magtape format
 form(I): generate form letter
 forml(I): generate form letters
 fc(I): compile Fortran program

 -- xxxxiiiiii --

 fpe(II): catch floating exception errors
 df(I): find free disk space
 fstat(II): status of open file
 ftoa(III): convert floating to ASCII
 ftoo(III): convert floating to octal
 exp(III): exponential function
 communicate with MH-TSS (GCOS)...tss(I):
 gerts(III): communicate with GCOS
 forml(I): generate form letters
 form(I): generate form letter
 vs(I): generate voice synthesizer phonemes
 pseudo random number generator...rand(III):
 gerts(III): communicate with GCOS
 getc(III): get character
 acct(VIII): get connect-time accounting
 date(I): get date and time of day
 wc(I): get (English) word count
 size(I): get executable program size
 times(II): get execution times
 stat(I): get file status
 stat(II): get file status
 ps(VIII): get process status
 time(I): get time information
 time(II): get time of year
 gtty(II): get typewriter mode
 getuid(II): get user ID
 getc(III): get character
 getty(VII): adapt to typewriter
 getuid(II): get user ID
 glob(VII): argument expander
 goto(I): command transfer
 greek(VII): extended TTY 37 typebox map
 gtty(II): get typewriter mode
 pr(I): print file with headings
 verify directory hierarchy...dcheck(VIII):
 hyphen(I): find hyphenated words
 hyphen(I): find hyphenated words
 hypot(III): compute hypotenuse
 hypot(III): compute hypotenuse
 clri(VIII): clear file’s i-node
 istat(VIII): file status by i-number
 getuid(II): get user ID
 setuid(II): set user ID
 if(I): conditional command
 ilgins(II): catch illegal instruction trap
 ilgins(II): catch illegal instruction trap
 core(V): core image file
 uniq(I): find duplicate lines in a file
 ptx(VI): permuted index
 time(I): get time information
 utmp(V): logged-in user information
 intr(II): catch or inhibit interrupts
 quit(II): inhibit quits

 -- xxxxiivv --

 init(VII): initializer process
 init(VII): initializer process
 ilgins(II): catch illegal instruction trap
 itoa(III): convert integer to ASCII
 atoi(III): convert ASCII to integer
 pipe(II): open inter process channel
 dsw(I): delete files interactively
 sh(I): command interpreter
 intr(II): catch or inhibit interrupts
 split(I): break a file into pieces
 intr(II): catch or inhibit interrupts
 istat(VIII): file status by i-number
 itoa(III): convert integer to ASCII
 encrypt according to a keyword...crypt(III):
 kill(II): destroy process
 kill(VIII): terminate a process
 kl(IV): console typewriter
 :(I): place label
 ld(I): link editor (loader)
 fed(I): form letter editor
 forml(I): generate form letters
 form(I): generate form letter
 uniq(I): find duplicate lines in a file
 ld(I): link editor (loader)
 link(II): link to file
 ln(I): link to file
 link(II): link to file
 ls(I): list contents of directory
 nlist(III): read name list
 ln(I): link to file
 dli(VIII): load DEC binary paper tapes
 a.out(V): assembler and loader output
 ld(I): link editor (loader)
 login(I): log on to system
 log(III): logarithm base e
 utmp(V): logged-in user information
 log(III): logarithm base e
 passwd(I): set login password
 login(I): log on to system
 nice(II): set low-priority status
 ls(I): list contents of directory
 m6(I): macroprocessor
 m6(I): macroprocessor
 tap(V): DECtape and magtape format
 mt(I): save, restore files on magtape
 tm 9-track magtape
 mail(I): send mail to another user
 mail(I): send mail to another user
 makdir(II): create directory
 man(I): run off manual section
 man(I): run off manual section
 ascii(VII): map of ASCII
 extended TTY 37 typebox map...greek(VII):

 -- xxxxvv --

 mdate(II): set date modified of file
 mem(IV): core memory
 mem(IV): core memory
 mesg(I): permit or deny messages
 mesg(III): print string on typewriter
 mesg(I): permit or deny messages
 tss(I): communicate with MH-TSS (GCOS)
 msh(VII): mini Shell
 mkdir(I): create directory
 chmod(I): change access mode of files
 chmod(II): change mode of file
 stty(II): set mode of typewriter
 stty(I): set typewriter modes
 gtty(II): get typewriter mode
 mdate(II): set date modified of file
 mount(II): mount file system
 mount(VIII): mount removable file system
 mount(II): mount file system
 mount(VIII): mount removable file system
 mv(I): move or rename file
 seek(II): move read or write pointer
 msh(VII): mini Shell
 mt(I): save, restore files on magtape
 mv(I): move or rename file
 nlist(III): read name list
 tty(I): find name of terminal
 nm(I): print namelist
 ttyn(III): find teletype name
 fork(II): create new process
 nice(II): set low-priority status
 nlist(III): read name list
 nm(I): print namelist
 nroff(I): format text for printing
 rand(III): pseudo random number generator
 pow(III): take powers of numbers
 factor(I): factor a number
 reloc(I): relocate object files
 od(I): octal dump of file
 convert floating to octal...ftoo(III):
 od(I): octal dump of file
 man(I): run off manual section
 opr(I): print file off-line
 close(II): close open file
 dup(II): duplicate an open file
 fstat(II): status of open file
 open(II): open file
 pipe(II): open inter process channel
 open(II): open file
 opr(I): print file off-line
 cat(I): concatenate (or print) files
 ecvt(III): edited output conversion
 assembler and loader output...a.out(V):
 ov(I): page overlay file print

 -- xxxxvvii --

 ov(I): page overlay file print
 chown(I): change owner of files
 chown(II): change owner of file
 ov(I): page overlay file print
 type(I): print file page-by-page
 dli(VIII): load DEC binary paper tapes
 pc(IV): punched paper tape
 passwd(I): set login password
 passwd(V): password file
 passwd(V): password file
 passwd(I): set login password
 pc(IV): punched paper tape
 mesg(I): permit or deny messages
 ptx(VI): permuted index
 generate voice synthesizer phonemes...vs(I):
 vsp(VII): voice synthesizer phonemes
 display character on Picturephone...ddsput(III):
 split(I): break a file into pieces
 pipe(II): open inter process channel
 :(I): place label
 seek(II): move read or write pointer
 pow(III): take powers of numbers
 pow(III): take powers of numbers
 pr(I): print file with headings
 echo(I): print command arguments
 opr(I): print file off-line
 type(I): print file page-by-page
 pr(I): print file with headings
 nm(I): print namelist
 mesg(III): print string on typewriter
 ptime(III): print time
 cat(I): concatenate (or print) files
 nroff(I): format text for printing
 roff(I): format text for printing
 ov(I): page overlay file print
 bproc(VIII): boot procedure
 pipe(II): open inter process channel
 ps(VIII): get process status
 rele(II): release processor
 fork(II): create new process
 init(VII): initializer process
 kill(II): destroy process
 kill(VIII): terminate a process
 wait(II): wait for process
 break(II): set program break
 exec(II): execute program file
 size(I): get executable program size
 bc(VI): compile B program
 cc(I): compile C program
 fc(I): compile Fortran program
 sno(I): compile Snobol program
 tmg(I): compile tmgl program
 proof(I): compare text files

 -- xxxxvviiii --

 rand(III): pseudo random number generator
 ps(VIII): get process status
 ptime(III): print time
 ptx(VI): permuted index
 pc(IV): punched paper tape
 putc(III): write character or word
 qsort(III): quicker sort
 qsort(III): quicker sort
 quit(II): inhibit quits
 quit(II): inhibit quits
 rand(III): pseudo random number generator
 rand(III): pseudo random number generator
 read(II): read file
 nlist(III): read name list
 seek(II): move read or write pointer
 csw(II): read the console switches
 read(II): read file
 20boot(VIII): reboot 11/20 system
 boot(II): reboot the system
 cref(I): cross reference table
 rele(II): release processor
 rele(II): release processor
 reloc(I): relocate object files
 strip(I): remove symbols, relocation bits
 reloc(I): relocate object files
 dc(IV): remote typewriter
 mount(VIII): mount removable file system
 rmdir(I): remove (delete) directory
 rm(I): remove (delete) file
 unlink(II): remove (delete) file
 strip(I): remove symbols, relocation bits
 mv(I): move or rename file
 salv(VIII): repair damaged file system
 tap(I): save, restore files on DECtape
 mt(I): save, restore files on magtape
 rew(I): rewind DECtape
 rew(I): rewind DECtape
 rf(IV): RF disk
 rf(IV): RF disk
 rk(IV): RK disk
 rk(IV): RK disk
 rmdir(I): remove (delete) directory
 rm(I): remove (delete) file
 roff(I): format text for printing
 sqrt(III): square root
 man(I): run off manual section
 salloc(III): storage allocator
 salv(VIII): repair damaged file system
 tap(I): save, restore files on DECtape
 mt(I): save, restore files on magtape
 man(I): run off manual section
 seek(II): move read or write pointer
 mail(I): send mail to another user

 -- xxxxvviiiiii --

 speak(I): send words to voice synthesizer
 exit(I): end command sequence
 mdate(II): set date modified of file
 passwd(I): set login password
 nice(II): set low-priority status
 stty(II): set mode of typewriter
 break(II): set program break
 stime(II): set system time
 tabs(VII): set tab stops on typewriter
 stty(I): set typewriter modes
 setuid(II): set user ID
 setuid(II): set user ID
 msh(VII): mini Shell
 sh(I): command interpreter
 sin(III): sine, cosine
 sin(III): sine, cosine
 size(I): get executable program size
 get executable program size...size(I):
 sleep(II): delay execution
 sno(I): compile Snobol program
 sno(I): compile Snobol program
 sort(I): sort ASCII file
 sort(I): sort ASCII file
 string compare for sort...compar(III):
 qsort(III): quicker sort
 df(I): find free disk space
 dpd(VII): spawn dataphone daemon
 speak(I): send words to voice synthesizer
 split(I): break a file into pieces
 sqrt(III): square root
 sqrt(III): square root
 stat(I): get file status
 stat(II): get file status
 istat(VIII): file status by i-number
 fstat(II): status of open file
 nice(II): set low-priority status
 ps(VIII): get process status
 stat(I): get file status
 stat(II): get file status
 stime(II): set system time
 tabs(VII): set tab stops on typewriter
 salloc(III): storage allocator
 vt(IV): storage-tube display
 compar(III): string compare for sort
 mesg(III): print string on typewriter
 strip(I): remove symbols, relocation bits
 stty(I): set typewriter modes
 stty(II): set mode of typewriter
 sum(I): sum file
 sum(I): sum file
 csw(II): read the console switches
 switch(III): transfer depending on value
 db(I): symbolic debugger

 -- xxxxiixx --

 strip(I): remove symbols, relocation bits
 un(I): find undefined symbols
 sync(II): assure synchronization
 sync(II): assure synchronization
 vs(I): generate voice synthesizer phonemes
 vsp(VII): voice synthesizer phonemes
 speak(I): send words to voice synthesizer
 file system(V): file system format
 stime(II): set system time
 chk(VIII): check all file systems
 file system(V): file system format
 20boot(VIII): reboot 11/20 system
 boot(II): reboot the system
 check consistency of file system...check(VIII):
 login(I): log on to system
 mount(II): mount file system
 mount removable file system...mount(VIII):
 repair damaged file system...salv(VIII):
 umount(II): dismount file system
 who(I): who is on the system
 tabs(VII): set tab stops on typewriter
 cref(I): cross reference table
 tabs(VII): set tab stops on typewriter
 pow(III): take powers of numbers
 load DEC binary paper tapes...dli(VIII):
 pc(IV): punched paper tape
 tap(I): save, restore files on DECtape
 tap(V): DECtape and magtape format
 tc(IV): DECtape
 ttyn(III): find teletype name
 tty(I): find name of terminal
 kill(VIII): terminate a process
 exit(II): terminate execution
 ed(I): text editor
 proof(I): compare text files
 nroff(I): format text for printing
 roff(I): format text for printing
 time(I): get time information
 date(I): get date and time of day
 time(II): get time of year
 ctime(III): convert time to ASCII
 time(I): get time information
 time(II): get time of year
 times(II): get execution times
 times(II): get execution times
 ptime(III): print time
 stime(II): set system time
 tm 9-track magtape
 tmg(I): compile tmgl program
 tmg(I): compile tmgl program
 switch(III): transfer depending on value
 goto(I): command transfer
 cemt(II): catch EMT traps

 -- xxxxxx --

 catch illegal instruction trap...ilgins(II):
 tss(I): communicate with MH-TSS (GCOS)
 greek(VII): extended TTY 37 typebox map
 tty(I): find name of terminal
 ttyn(III): find teletype name
 greek(VII): extended TTY 37 typebox map
 type(I): print file page-by-page
 stty(I): set typewriter modes
 gtty(II): get typewriter mode
 dc(IV): remote typewriter
 getty(VII): adapt to typewriter
 kl(IV): console typewriter
 mesg(III): print string on typewriter
 stty(II): set mode of typewriter
 tabs(VII): set tab stops on typewriter
 typo(I): find typographic errors
 typo(I): find typographic errors
 umount(II): dismount file system
 un(I): find undefined symbols
 un(I): find undefined symbols
 uniq(I): find duplicate lines in a file
 unlink(II): remove (delete) file
 du(I): find disk usage
 getuid(II): get user ID
 setuid(II): set user ID
 utmp(V): logged-in user information
 mail(I): send mail to another user
 write(I): write to another user
 utmp(V): logged-in user information
 transfer depending on value...switch(III):
 dcheck(VIII): verify directory hierarchy
 vs(I): generate voice synthesizer phonemes
 vsp(VII): voice synthesizer phonemes
 speak(I): send words to voice synthesizer
 vs(I): generate voice synthesizer phonemes
 vsp(VII): voice synthesizer phonemes
 vt(IV): storage-tube display
 wait(II): wait for process
 wait(II): wait for process
 wc(I): get (English) word count
 who(I): who is on the system
 who(I): who is on the system
 gerts(III): communicate with GCOS
 pr(I): print file with headings
 tss(I): communicate with MH-TSS (GCOS)
 wc(I): get (English) word count
 speak(I): send words to voice synthesizer
 hyphen(I): find hyphenated words
 putc(III): write character or word
 chdir(I): change working directory
 chdir(II): change working directory
 putc(III): write character or word
 write(II): write file

 -- xxxxxxii --

 seek(II): move read or write pointer
 write(I): write to another user
 write(I): write to another user
 write(II): write file
 wtmp(V): accounting files
 yacc(VI): yet another compiler-compiler
 time(II): get time of year
 yacc(VI): yet another compiler-compiler

 -- xxxxxxiiii --

: (I) 3/15/72 : (I)

NAME : -- place a label

SYNOPSIS :_ [label]

DESCRIPTION :_ does nothing. Its only function is to place a
 label for the g_o_t_o_ command. :_ is a command so
 the Shell doesn’t have to be fixed to ignore
 lines with :’s.

FILES --

SEE ALSO goto(I)

DIAGNOSTICS --

BUGS --

 - 1 -

AR (I) 3/15/72 AR (I)

NAME ar -- archive

SYNOPSIS a_r_ key afile name918 ...

DESCRIPTION a_r_ maintains groups of files combined into a sin-
 gle archive file. Its main use is to create and
 update library files as used by the loader. It
 can be used, though, for any similar purpose.

 k_e_y_ is one character from the set d_r_t_u_x_, option-
 ally concatenated with v_. a_f_i_l_e_ is the archive
 file. The n_a_m_e_s_ are constituent files in the ar-
 chive file. The meanings of the k_e_y_ characters
 are:

 d_ means delete the named files from the archive
 file.

 r_ means replace the named files in the archive
 file. If the archive file does not exist, r_ will
 create it. If the named files are not in the ar-
 chive file, they are appended.

 t_ prints a table of contents of the archive file.
 If no names are given, all files in the archive
 are tabled. If names are given, only those files
 are tabled.

 u_ is similar to r_ except that only those files
 that have been modified are replaced. If no
 names are given, all files in the archive that
 have been modified will be replaced by the modi-
 fied version.

 x_ will extract the named files. If no names are
 given, all files in the archive are extracted.
 In neither case does x_ alter the archive file.

 v_ means verbose. Under the verbose option, a_r_
 gives a file-by-file description of the making of
 a new archive file from the old archive and the
 constituent files. The following abbreviations
 are used:

 c_ copy
 a_ append
 d_ delete
 r_ replace
 x_ extract

FILES /tmp/vtm? temporary

SEE ALSO ld(I), archive(V)

 - 1 -

AR (I) 3/15/72 AR (I)

DIAGNOSTICS "Bad usage", "afile -- not in archive format",
 "cannot open temp file", "name -- cannot open",
 "name -- phase error", "name -- cannot create",
 "no archive file", "cannot create archive file",
 "name -- not found".

BUGS Option v_t_ should be implemented as a table with
 more information.

 There should be a way to specify the placement of
 a new file in an archive. Currently, it is
 placed at the end.

 "ar x" changes the modified-date of the current
 directory to a random number.

 - 2 -

AS (I) 1/15/73 AS (I)

NAME as -- assembler

SYNOPSIS a_s_ [-_] name918 ...

DESCRIPTION a_s_ assembles the concatenation of name1, If
 the optional first argument -_ is used, all unde-
 fined symbols in the assembly are treated as
 global.

 The output of the assembly is left on the file
 "a.out". It is executable if no errors occurred
 during the assembly.

FILES /etc/as2 pass 2 of the assembler
 /tmp/atm1? temporary
 /tmp/atm2? temporary
 /tmp/atm3? temporary
 a.out object

SEE ALSO ld(I), nm(I), un(I), db(I), a.out(V), "UNIX As-
 sembler Manual".

DIAGNOSTICS When an input file cannot be read, its name fol-
 lowed by a question mark is typed and assembly
 ceases. When syntactic or semantic errors occur,
 a single-character diagnostic is typed out to-
 gether with the line number and the file name in
 which it occurred. Errors in pass 1 cause can-
 cellation of pass 2. The possible errors are:

) parentheses error
] parentheses error
 < String not terminated properly
 * Indirection ("*_") used illegally
 A error in A_ddress
 B B_ranch instruction is odd or too remote
 E error in E_xpression
 F error in local ("F_" or "b") type symbol
 G G_arbage (unknown) character
 I End of file inside an I_f_
 M M_ultiply defined symbol as label
 O O_dd-- word quantity assembled at odd address
 P P_hase error-- "." different in pass 1 and 2
 R R_elocation error
 U U_ndefined symbol
 X syntaX_ error

BUGS Symbol table overflow is not checked.

 - 1 -

BAS (I) 1/15/73 BAS (I)

NAME bas -- basic

SYNOPSIS b_a_s_ [file]

DESCRIPTION b_a_s_ is a dialect of basic [1]. If a file argu-
 ment is provided, the file is used for input be-
 fore the console is read.

 b_a_s_ accepts lines of the form:

 statement
 integer statement

 Integer numbered statements (known as internal
 statements) are stored for later execution. They
 are stored in sorted ascending order. Non-num-
 bered statements are immediately executed. The
 result of an immediate expression statement (that
 does not have ’=’ as its highest operator) is
 printed.

 Statements have the following syntax:

 expression
 The expression is executed for its side ef-
 fects (assignment or function call) or for
 printing as described above.

 d_o_n_e_
 Return to system level.

 d_r_a_w_ expression expression expression
 A line is drawn on the Tektronix 611 dis-
 play (/dev/vt0) from the current display
 position to the XY co-ordinates specified
 by the first two expressions. (The scale
 is zero to one in both X and Y directions)
 If the third expression is zero, the line
 is invisible. The current display position
 is set to the end point.

 d_i_s_p_l_a_y_ list
 The list of expressions and strings is con-
 catenated and displayed (i.e. printed) on
 the 611 starting at the current display po-
 sition. The current display position is
 not changed.

 e_r_a_s_e_
 The 611 screen is erased.

 f_o_r_ name =_= expression expression statement
 f_o_r_ name =_ expression expression
 n_e_x_t_

 - 1 -

BAS (I) 1/15/73 BAS (I)

 The f_o_r_ statement repetitively executes a
 statement (first form) or a group of state-
 ments (second form) under control of a
 named variable. The variable takes on the
 value of the first expression, then is in-
 cremented by one on each loop, not to ex-
 ceed the value of the second expression.

 g_o_t_o_ expression
 The expression is evaluated, truncated to
 an integer and execution goes to the corre-
 sponding integer numbered statment. If ex-
 ecuted from immediate mode, the internal
 statements are compiled first.

 i_f_ expression statement
 The statement is executed if the expression
 evaluates to non-zero.

 l_i_s_t_ [expression [expression]]
 l_i_s_t_ is used to print out the stored inter-
 nal statements. If no arguments are given,
 all internal statements are printed. If
 one argument is given, only that internal
 statement is listed. If two arguments are
 given, all internal statements inclusively
 between the arguments are printed.

 p_r_i_n_t_ list
 The list of expressions and strings are
 concatenated and printed. (A string is de-
 limited by " characters.)

 r_e_t_u_r_n_ [expression]
 The expression is evaluated and the result
 is passed back as the value of a function
 call. If no expression is given, zero is
 returned.

 r_u_n_
 The internal statements are compiled. The
 symbol table is re-initialized. The random
 number generator is re-set. Control is
 passed to the lowest numbered internal
 statement.

 Expressions have the following syntax:

 name
 A name is used to specify a variable.
 Names are composed of a letter (’a’ - ’z’)
 followed by letters and digits. The first
 four characters of a name are significant.

 - 2 -

BAS (I) 1/15/73 BAS (I)

 number
 A number is used to represent a constant
 value. A number is composed of digits, at
 most one decimal point (’.’) and possibly
 a scale factor of the form e_ digits or e_-_
 digits.

 (_ expression)_
 Parentheses are used to alter normal order
 of evaluation.

 expression operator expression
 Common functions of two arguments are ab-
 breviated by the two arguments separated by
 an operator denoting the function. A com-
 plete list of operators is given below.

 expression (_ [expression [,_ expression ...]])_
 Functions of an arbitrary number of argu-
 ments can be called by an expression fol-
 lowed by the arguments in parentheses sepa-
 rated by commas. The expression evaluates
 to the line number of the entry of the
 function in the internally stored state-
 ments. This causes the internal statements
 to be compiled. If the expression evalu-
 ates negative, a builtin function is
 called. The list of builtin functions ap-
 pears below.

 name [_ expression [,_ expression ...]]_
 Each expression is truncated to an integer
 and used as a specifier for the name. The
 result is syntactically identical to a
 name. a[1,2] is the same as a[1][2]. The
 truncated expressions are restricted to
 values between 0 and 32767.

 The following is the list of operators:

 =
 = is the assignment operator. The left op-
 erand must be a name or an array element.
 The result is the right operand. Assign-
 ment binds right to left, all other opera-
 tors bind left to right.

 & |
 &_ (logical and) has result zero if either
 of its arguments are zero. It has result
 one if both its arguments are non-zero. |_
 (logical or) has result zero if both of its
 arguments are zero. It has result one if
 either of its arguments are non-zero.

 - 3 -

BAS (I) 1/15/73 BAS (I)

 < <= > >= == <>
 The relational operators (< less than, <=
 less than or equal, > greater than, >=
 greater than or equal, == equal to, <> not
 equal to) return one if their arguments are
 in the specified relation. They return ze-
 ro otherwise. Relational operators at the
 same level extend as follows: a>b>c is the
 same as a>b&b>c.

 + -
 Add and subtract.

 * /
 Multiply and divide.

 ^
 Exponentiation.

 The following is a list of builtin functions:

 arg
 Arg(i) is the value of the i_th actual pa-
 rameter on the current level of function
 call.

 exp
 Exp(x) is the exponential function of x.

 log
 Log(x) is the logarithm base e of x.

 sin
 Sin(x) is the sine of x (radians).

 cos
 Cos(x) is the cosine of x (radians).

 atn
 Atn(x) is the arctangent of x.

 rnd
 Rnd() is a uniformly distributed random
 number between zero and one.

 expr
 Expr() is the only form of program input.
 A line is read from the input and evaluated
 as an expression. The resultant value is
 returned.

 int
 Int(x) returns x truncated to an integer.

 - 4 -

BAS (I) 1/15/73 BAS (I)

FILES /tmp/btm? temporary

SEE ALSO [1] DEC-11-AJPB-D

DIAGNOSTICS Syntax errors cause the incorrect line to be
 typed with an underscore where the parse failed.
 All other diagnostics are self explanatory.

BUGS --

 - 5 -

CAT (I) 1/15/73 CAT (I)

NAME cat -- concatenate and print

SYNOPSIS c_a_t_ file918 ...

DESCRIPTION c_a_t_ reads each file in sequence and writes it on
 the standard output. Thus:

 c_a_t_ f_i_l_e_

 is about the easiest way to print a file. Also:

 c_a_t_ f_i_l_e_1_ f_i_l_e_2_ >_f_i_l_e_3_

 is about the easiest way to concatenate files.

 If no input file is given c_a_t_ reads from the
 standard input file.

 If the argument "-" is encountered, cat reads
 from the standard input file.

FILES --

SEE ALSO pr(I), cp(I)

DIAGNOSTICS none; if a file cannot be found it is ignored.

BUGS cat x y >x and cat x y >y cause strange re-
 sults.

 - 1 -

CC (I) 3/15/72 CC (I)

NAME cc -- C compiler

SYNOPSIS c_c_ [-_c_] sfile1._c_ ... ofile1 ...

DESCRIPTION c_c_ is the UNIX C compiler. It accepts three
 types of arguments:

 Arguments whose names end with ".c" are assumed
 to be C source programs; they are compiled, and
 the object program is left on the file sfile1.o
 (i.e. the file whose name is that of the source
 with ".o" substituted for ".c").

 Other arguments (except for "-c") are assumed to
 be either loader flag arguments, or C-compatible
 object programs, typically produced by an earlier
 c_c_ run, or perhaps libraries of C-compatible rou-
 tines. These programs, together with the results
 of any compilations specified, are loaded (in the
 order given) to produce an executable program
 with name a_._o_u_t_.

 The "-c" argument suppresses the loading phase,
 as does any syntax error in any of the routines
 being compiled.

FILES file.c input file
 file.o object file
 a.out loaded output
 /tmp/ctm? temporary
 /lib/c[01] compiler
 /lib/crt0.o runtime startoff
 /lib/libc.a builtin functions, etc.
 /lib/liba.a system library

SEE ALSO C reference manual (in preparation), cdb(I)

DIAGNOSTICS Diagnostics are intended to be self-explanatory.

BUGS --

 - 1 -

CDB (I) 1/15/73 CDB (I)

NAME cdb -- C debugger

SYNOPSIS c_d_b_ [core [a.out]]

DESCRIPTION c_d_b_ is a debugging program for use with C pro-
 grams. It is by no means completed, and this
 section is essentially only a placeholder for the
 actual description.

 Cdb resembles d_b_ in many respects, except that
 all integers are decimal.

 Even the present c_d_b_ has one useful feature: the
 command

 $

 will give a stack trace of the core image of a
 terminated C program. The calls are listed in
 the order made; the actual arguments to each rou-
 tine are given in octal.

FILES --

SEE ALSO cc(I), db(I), C Reference Manual

DIAGNOSTICS "?"

BUGS --

 - 1 -

CHDIR (I) 3/15/72 CHDIR (I)

NAME chdir -- change working directory

SYNOPSIS c_h_d_i_r_ directory

DESCRIPTION d_i_r_e_c_t_o_r_y_ becomes the new working directory.

 Because a new process is created to execute each
 command, c_h_d_i_r_ would be ineffective if it were
 written as a normal command. It is therefore
 recognized and executed by the Shell.

FILES --

SEE ALSO sh(I)

DIAGNOSTICS "Bad directory" if the directory cannot be
 changed to.

BUGS --

 - 1 -

CHMOD (I) 3/15/72 CHMOD (I)

NAME chmod -- change mode

SYNOPSIS c_h_m_o_d_ octal file918 ...

DESCRIPTION The octal mode replaces the mode of each of the
 files. The mode is constructed from the OR of
 the following modes:

 01 write for non-owner
 02 read for non-owner
 04 write for owner
 10 read for owner
 20 executable
 40 set-UID

 Only the owner of a file may change its mode.

FILES --

SEE ALSO stat(I), ls(I)

DIAGNOSTICS "?"

BUGS --

 - 1 -

CHOWN (I) 3/15/72 CHOWN (I)

NAME chown -- change owner

SYNOPSIS c_h_o_w_n_ owner file918 ...

DESCRIPTION o_w_n_e_r_ becomes the new owner of the files. The
 owner may be either a decimal UID or a login name
 found in the password file.

 Only the owner of a file is allowed to change the
 owner. It is illegal to change the owner of a
 file with the set-user-ID mode.

FILES /etc/passwd

SEE ALSO stat(I)

DIAGNOSTICS "Who?" if owner cannot be found, "file?" if file
 cannot be found.

BUGS --

 - 1 -

CMP (I) 1/15/73 CMP (I)

NAME cmp -- compare two files

SYNOPSIS c_m_p_ file918 file928

DESCRIPTION The two files are compared for identical con-
 tents. Discrepancies are noted by giving the
 offset and the differing words, all in octal.

FILES --

SEE ALSO proof(I)

DIAGNOSTICS Messages are given for inability to open either
 argument, premature EOF on either argument, and
 incorrect usage.

BUGS If the shorter of the two files is of odd length,
 cmp acts as if a null byte had been appended to
 it.

 - 1 -

CP (I) 1/24/73 CP (I)

NAME cp -- copy

SYNOPSIS c_p_ file918 file928

DESCRIPTION The first file is copied onto the second. The
 mode and owner of the target file are preserved
 if it already existed; the mode of the source
 file is used otherwise.

 If file928 is a directory, then the target file
 is a file in that directory with the file-name of
 file918.

FILES --

SEE ALSO cat(I), pr(I), mv(I)

DIAGNOSTICS Error returns are checked at every system call,
 and appropriate diagnostics are produced.

BUGS Copying a file onto itself destroys its contents.

 - 1 -

CREF (I) 2/5/1973 CREF (I)

NAME cref -- make cross reference listing

SYNOPSIS c_r_e_f_ [-_s_o_i_] name1 ...

DESCRIPTION CREF makes a cross reference listing of files in
 assembler format (see AS(I)). The files named as
 arguments in the command line are searched for
 symbols (defined as a succession of alphabetics,
 numerics, ’.’, or ’_’, beginning with an alpha-
 betic, ’.’, or ’_’).

 The output report is in four columns:

 (1) (2) (3) (4)
 symbol file see text as it appears in file
 below

 The third column contains the line number in the
 file by default; the -_s_ option will cause the
 most recent name symbol to appear there instead.

 CREF uses either an i_g_n_o_r_e_ file or an o_n_l_y_ file.
 If the -_i_ option is given, it will take the next
 file name to be an i_g_n_o_r_e_ file; if the -_o_ option
 is given, the next file name will be taken as an
 o_n_l_y_ file. I_g_n_o_r_e_ and o_n_l_y_ files should be lists
 of symbols separated by new lines. If an i_g_n_o_r_e_
 file is given, all the symbols in the file will
 be ignored in columns (1) and (3) of the output.
 If an o_n_l_y_ file is given, only symbols appearing
 in the file will appear in column (1), but column
 (3) will still contain the most recent name en-
 countered. Only one of the options -_i_ or -_o_ may
 be used. The default setting is -_i_; all symbols
 predefined in the assembler are ignored, except
 system call names, which are collected.

FILES Files t.0, t.1, t.2, t.3 are created (i.e. DE-
 STROYED) in the working directory of anyone using
 c_r_e_f_. This nuisance will be repaired soon. The
 output is left in file s_._o_u_t_ in the working di-
 rectory.

 /usr/lem/s.tab is the default i_g_n_o_r_e_ file.

SEE ALSO as(I)

DIAGNOSTICS "line too long" -- input line >131 characters

 "symbol too long" -- symbol >20 characters

 "too many symbols" -- >10 symbols in line

 "cannot open t.?" -- bug; see LEM

 - 1 -

CREF (I) 2/5/1973 CREF (I)

 "cannot fork; examine t.out" -- can’t start s_o_r_t_
 process; intermediate results are on files
 t_._0_, t_._1_,t_._2_,t_._3_. These may be sorted inde-
 pendently and the results concatenated by the
 user.

 "cannot sort" -- odd response from s_o_r_t_; examine
 intermediate results, as above.

 "impossible situation" -- system bug

 "cannot open" file -- one of the input names
 cannot be opened for reading.

BUGS The destruction of unsuspecting users’ files
 should soon be fixed. A limitation that may
 eventually go away is the restriction to assem-
 bler language format. There should be options for
 FORTRAN, English, etc., lexical analysis.

 File names longer than eight characters cause
 misalignment in the output if tabs are set at ev-
 ery eighth column.

 It should write on the standard output, not
 s.out.

 - 2 -

CRYPT (I) 10/23/71 CRYPT (I)

NAME crypt -- encode/decode

SYNOPSIS c_r_y_p_t_ [password]

DESCRIPTION c_r_y_p_t_ is an exact implementation of Boris
 Hagelin’s cryptographic machine called the M-209
 by the U. S. Army [1].

 c_r_y_p_t_ reads from the standard input file and
 writes on the standard output. For a given pass-
 word, the encryption process is idempotent; that
 is,

 crypt znorkle <clear >cypher
 crypt znorkle <cypher

 will print the clear.

 c_r_y_p_t_ is suitable for use as a filter:

 pr <"crypt bandersnatch"<cypher

FILES --

SEE ALSO [1] U. S. Patent 2,089,603.

DIAGNOSTICS --

BUGS --

 - 1 -

DATE (I) 3/15/72 DATE (I)

NAME date -- print and set the date

SYNOPSIS d_a_t_e_ [mmddhhmm]

DESCRIPTION If no argument is given, the current date is
 printed to the second. If an argument is given,
 the current date is set. m_m_ is the month number;
 d_d_ is the day number in the month; h_h_ is the hour
 number (24 hour system); m_m_ is the minute number.
 For example:

 date 10080045

 sets the date to Oct 8, 12:45 AM.

FILES --

SEE ALSO --

DIAGNOSTICS "?" if the argument is syntactically incorrect.

BUGS --

 - 1 -

DB (I) 3/15/72 DB (I)

NAME db -- debug

SYNOPSIS d_b_ [core [namelist]] [-_]

DESCRIPTION Unlike many debugging packages (including DEC’s
 ODT, on which d_b_ is loosely based) d_b_ is not
 loaded as part of the core image which it is used
 to examine; instead it examines files. Typical-
 ly, the file will be either a core image produced
 after a fault or the binary output of the assem-
 bler. C_o_r_e_ is the file being debugged; if omit-
 ted "core" is assumed. n_a_m_e_l_i_s_t_ is a file con-
 taining a symbol table. If it is omitted, the
 symbol table is obtained from the file being de-
 bugged, or if not there from a_._o_u_t_. If no appro-
 priate name list file can be found, d_b_ can still
 be used but some of its symbolic facilities be-
 come unavailable.

 For the meaning of the optional third argument,
 see the last paragraph below.

 The format for most d_b_ requests is an address
 followed by a one character command.

 Addresses are expressions built up as follows:

 1. A name has the value assigned to it when
 the input file was assembled. It may be
 relocatable or not depending on the use of
 the name during the assembly.

 2. An octal number is an absolute quantity
 with the appropriate value.

 3. A decimal number immediately followed by
 "." is an absolute quantity with the appro-
 priate value.

 4. An octal number immediately followed by
 "r" is a relocatable quantity with the ap-
 propriate value.

 5. The symbol "." indicates the current
 pointer of d_b_. The current pointer is set
 by many d_b_ requests.

 6. A "*" before an expression forms an expres-
 sion whose value is the number in the word
 addressed by the first expression. A "*"
 alone is equivalent to "*.".

 6. Expressions separated by "+" or " " (blank)
 are expressions with value equal to the sum

 - 1 -

DB (I) 3/15/72 DB (I)

 of the components. At most one of the com-
 ponents may be relocatable.

 8. Expressions separated by "-" form an ex-
 pression with value equal to the difference
 to the components. If the right component
 is relocatable, the left component must be
 relocatable.

 9. Expressions are evaluated left to right.

 Names for registers are built in:

 r0 ... r5
 sp
 pc
 fr0 ... fr5

 These may be examined. Their values are deduced
 from the contents of the stack in a core image
 file. They are meaningless in a file that is not
 a core image.

 If no address is given for a command, the current
 address (also specified by ".") is assumed. In
 general, "." points to the last word or byte
 printed by d_b_.

 There are d_b_ commands for examining locations in-
 terpreted as octal numbers, machine instructions,
 ASCII characters, and addresses. For numbers and
 characters, either bytes or words may be exam-
 ined. The following commands are used to examine
 the specified file.

 / The addressed word is printed in octal.

 \ The addressed byte is printed in octal.

 " The addressed word is printed as two
 ASCII characters.

 ‘ The addressed word is printed in decimal.

 ? The addressed word is interpreted as a
 machine instruction and a symbolic form of
 the instruction, including symbolic ad-
 dresses, is printed. Often, the result
 will appear exactly as it was written in
 the source program.

 & The addressed word is interpreted as a
 symbolic address and is printed as the name

 - 2 -

DB (I) 3/15/72 DB (I)

 of the symbol whose value is closest to the
 addressed word, possibly followed by a
 signed offset.

 <nl> (i. e., the character "new line")
 This command advances the current location
 counter "." and prints the resulting loca-
 tion in the mode last specified by one of
 the above requests.

 ^ This character decrements "." and prints
 the resulting location in the mode last se-
 lected one of the above requests. It is a
 converse to <nl>.

 % Exit.

 Odd addresses to word-oriented commands are
 rounded down. The incrementing and decrementing
 of "." done by the <nl> and ^ requests is by one
 or two depending on whether the last command was
 word or byte oriented.

 The address portion of any of the above commands
 may be followed by a comma and then by an expres-
 sion. In this case that number of sequential
 words or bytes specified by the expression is
 printed. "." is advanced so that it points at
 the last thing printed.

 There are two commands to interpret the value of
 expressions.

 = When preceded by an expression, the val-
 ue of the expression is typed in octal.
 When not preceded by an expression, the
 value of "." is indicated. This command
 does not change the value of ".".

 : An attempt is made to print the given
 expression as a symbolic address. If the
 expression is relocatable, that symbol is
 found whose value is nearest that of the
 expression, and the symbol is typed, fol-
 lowed by a sign and the appropriate offset.
 If the value of the expression is absolute,
 a symbol with exactly the indicated value
 is sought and printed if found; if no
 matching symbol is discovered, the octal
 value of the expression is given.

 The following command may be used to patch the
 file being debugged.

 - 3 -

DB (I) 3/15/72 DB (I)

 ! This command must be preceded by an ex-
 pression. The value of the expression is
 stored at the location addressed by the
 current value of ".". The opcodes do not
 appear in the symbol table, so the user
 must assemble them by hand.

 The following command is used after a fault has
 caused a core image file to be produced.

 $ causes the fault type and the contents
 of the general registers and several other
 registers to be printed both in octal and
 symbolic format. The values are as they
 were at the time of the fault.

 D_b_ should not be used to examine special files,
 for example disks and tapes, since it reads one
 byte at a time. Use od(I) instead.

 For some purposes, it is important to know how
 addresses typed by the user correspond with loca-
 tions in the file being debugged. The mapping
 algorithm employed by d_b_ is non-trivial for two
 reasons: First, in an a_._o_u_t_ file, there is a
 20(8) byte header which will not appear when the
 file is loaded into core for execution. There-
 fore, apparent location 0 should correspond with
 actual file offset 20. Second, some systems
 cause a "squashed" core image to be written. In
 such a core image, addresses in the stack must be
 mapped according to the degree of squashing which
 has been employed. D_b_ obeys the following rules:

 If exactly one argument is given, and if it ap-
 pears to be an a_._o_u_t_ file, the 20-byte header is
 skipped during addressing, i.e., 20 is added to
 all addresses typed. As a consequence, the head-
 er can be examined beginning at location -20.

 If exactly one argument is given and if the file
 does not appear to be an a_._o_u_t_ file, no mapping
 is done.

 If zero or two arguments are given, the mapping
 appropriate to a core image file is employed.
 This means that locations above the program break
 and below the stack effectively do not exist (and
 are not, in fact, recorded in the core file).
 Locations above the user’s stack pointer are
 mapped, in looking at the core file, to the place
 where they are really stored. The per-process
 data kept by the system, which is stored in the

 - 4 -

DB (I) 3/15/72 DB (I)

 last 512(10) bytes of the core file, can be ad-
 dressed at apparent locations 160000-160777.

 If one wants to examine a file which has an asso-
 ciated name list, but is not a core image file,
 the last argument "-" can be used (actually the
 only purpose of the last argument is to make the
 number of arguments not equal to two). This fea-
 ture is used most frequently in examining the
 memory file /dev/mem.

FILES --

SEE ALSO as(I), core(V), a.out(V), od(I)

DIAGNOSTICS "File not found" if the first argument cannot be
 read; otherwise "?".

BUGS --

 - 5 -

DC (I) 1/15/73 DC (I)

NAME dc -- desk calculator

SYNOPSIS d_c_ [file]

DESCRIPTION d_c_ is an arbitrary precision integer arithmetic
 package. The overall structure of dc is a stack-
 ing (reverse Polish) calculator. The following
 constructions are recognized by the calculator:

 number
 The value of the number is pushed on the
 stack. A number is an unbroken string of the
 digits 0-9. It may be preceded by an under-
 score (_) to input a negative number.

 +_ -_ *_ /_ %_ _̂
 The top two values on the stack are added (+_),
 subtracted (-_), multiplied (*_), divided (/_),
 remaindered (%_) or exponentiated (^). The two
 entries are popped off the stack; the result
 is pushed on the stack in their place.

 s_x
 The top of the stack is popped and stored into
 a register named x, where x may be any charac-
 ter.

 l_x
 The value in register x is pushed on the
 stack. The register x is not altered. All
 registers start with zero value.

 d_
 The top value on the stack is pushed on the
 stack. Thus the top value is duplicated.

 p_
 The top value on the stack is printed. The
 top value remains unchanged.

 f_
 All values on the stack and in registers are
 printed.

 _q
 exits the program. If executing a string, the
 nesting level is popped by two.

 _x
 treats the top element of the stack as a char-
 acter string and executes it as a string of dc
 commands.

 [_._._._]_

 - 1 -

DC (I) 1/15/73 DC (I)

 puts the bracketed ascii string onto the top
 of the stack.

 <_x =_x >_x
 The top two elements of the stack are popped
 and compared. Register x is executed if they
 obey the stated relation.

 _v
 replaces the top element on the stack by its
 square root.

 !_
 interprets the rest of the line as a UNIX com-
 mand.

 c_
 All values on the stack are popped.

 i_
 The top value on the stack is popped and used
 as the number radix for further input.

 o_
 the top value on the stack is popped and used
 as the number radix for further output.

 z_
 the stack level is pushed onto the stack.

 ?_
 a line of input is taken from the input source
 (usually the console) and executed.

 new-line
 ignored except as the name of a register or to
 end the response to a ?_.

 space
 ignored except as the name of a register or to
 terminate a number.

 If a file name is given, input is taken from that
 file until end-of-file, then input is taken from
 the console.

 An example to calculate the monthly, weekly and
 hourly rates for a $10,000/year salary.

 10000
 100* (now in cents)
 dsa (non-destructive store)
 12/ (pennies per month)
 la52/ (pennies per week)

 - 2 -

DC (I) 1/15/73 DC (I)

 d10* (deci-pennies per week)
 375/ (pennies per hour)
 f (print all results)
 512
 19230
 83333
 "a" 1000000

 An example which prints the first ten values of n! is
 [la1+dsa*pla10>x]sx
 0sa1
 lxx

FILES --

SEE ALSO msh(VII), salloc(III)

DIAGNOSTICS (x) ? for unrecognized character x.
 (x) ? for not enough elements on the stack to do
 what was asked by command x.
 "Out of space" when the free list is exhausted
 (too many digits).
 "Out of headers" for too many numbers being kept
 around.
 "Out of pushdown" for too many items on the
 stack.
 "Nesting Depth" for too many levels of nested ex-
 ecution.

BUGS --

 - 3 -

DF (I) 1/20/73 DF (I)

NAME df -- disk free

SYNOPSIS d_f_ [filesystem]

DESCRIPTION d_f_ prints out the number of free blocks available
 on a file system. If the file system is unspeci-
 fied, the free space on all of the normally
 mounted file systems is printed.

FILES /dev/rf?, /dev/rk?, /dev/rp?

SEE ALSO check(VIII)

DIAGNOSTICS --

BUGS --

 - 1 -

DSW (I) 3/15/72 DSW (I)

NAME dsw -- delete interactively

SYNOPSIS d_s_w_ [directory]

DESCRIPTION For each file in the given directory ("." if not
 specified) d_s_w_ types its name. If "y" is typed,
 the file is deleted; if "x", d_s_w_ exits; if any-
 thing else, the file is not removed.

FILES --

SEE ALSO rm(I)

DIAGNOSTICS "?"

BUGS The name "dsw" is a carryover from the ancient
 past. Its etymology is amusing but the name is
 nonetheless ill-advised.

 - 1 -

DU (I) 1/20/73 DU (I)

NAME du -- summarize disk usage

SYNOPSIS d_u_ [-_s_] [-_a_] [name ...]

DESCRIPTION d_u_ gives the number of blocks contained in all
 files and (recursively) directories within each
 specified directory or file n_a_m_e_. If n_a_m_e_ is
 missing, ._ is used.

 The optional argument -_s_ causes only the grand
 total to be given. The optional argument -_a_
 causes an entry to be generated for each file.
 Absence of either causes an entry to be generated
 for each directory only.

 A file which has two links to it is only counted
 once.

FILES .

SEE ALSO --

DIAGNOSTICS --

BUGS Non-directories given as arguments (not under -a
 option) are not listed.

 Removable file systems do not work correctly
 since i-numbers may be repeated while the corre-
 sponding files are distinct. Du should maintain
 an i-number list per root directory encountered.

 - 1 -

ECHO (I) 3/15/72 ECHO (I)

NAME echo -- echo arguments

SYNOPSIS e_c_h_o_ [arg89918 ...]

DESCRIPTION e_c_h_o_ writes all its arguments in order as a line
 on the standard output file. It is mainly useful
 for producing diagnostics in command files.

FILES --

SEE ALSO --

DIAGNOSTICS --

BUGS --

 - 1 -

ED (I) 1/15/73 ED (I)

NAME
 ed -- editor

SYNOPSIS
 e_d_ [name]

DESCRIPTION
 e_d_ is the standard text editor.

 If the optional argument is given, e_d_ simulates an e_ com-
 mand on the named file; that is to say, the file is read
 into e_d_’s buffer so that it can be edited.

 e_d_ operates on a copy of any file it is editing; changes
 made in the copy have no effect on the file until a write
 (w_) command is given. The copy of the text being edited
 resides in a temporary file called the b_u_f_f_e_r_. There is
 only one buffer.

 Commands to e_d_ have a simple and regular structure: zero
 or more a_d_d_r_e_s_s_e_s_ followed by a single character c_o_m_m_a_n_d_,
 possibly followed by parameters to the command. These
 addresses specify one or more lines in the buffer. Every
 command which requires addresses has default addresses,
 so that the addresses can often be omitted.

 In general, only one command may appear on a line. Cer-
 tain commands allow the input of text. This text is
 placed in the appropriate place in the buffer. While e_d_
 is accepting text, it is said to be in i_n_p_u_t_ m_o_d_e_. In
 this mode, no commands are recognized; all input is mere-
 ly collected. Input mode is left by typing a period (.)
 alone at the beginning of a line.

 e_d_ supports a limited form of r_e_g_u_l_a_r_ e_x_p_r_e_s_s_i_o_n_ nota-
 tion. A regular expression is an expression which speci-
 fies a set of strings of characters. A member of this
 set of strings is said to be m_a_t_c_h_e_d_ by the regular ex-
 pression. The regular expressions allowed by e_d_ are con-
 structed as follows:

 1. An ordinary character (not one of those discussed
 below) is a regular expression and matches that
 character.

 2. A circumflex (^) at the beginning of a regular ex-
 pression matches the null character at the begin-
 ning of a line.

 3. A currency symbol ($) at the end of a regular ex-
 pression matches the null character at the end of a
 line.

 4. A period (.) matches any character but a new-line

 - 1 -

ED (I) 1/15/73 ED (I)

 character.

 5. A regular expression followed by an asterisk (*)
 matches any number of adjacent occurrences (includ-
 ing zero) of the regular expression it follows.

 6. A string of characters enclosed in square brackets
 ([]) matches any character in the string but no
 others. If, however, the first character of the
 string is a circumflex (^) the regular expression
 matches any character but new-line and the charac-
 ters in the string.

 7. The concatenation of regular expressions is a regu-
 lar expression which matches the concatenation of
 the strings matched by the components of the regu-
 lar expression.

 8. The null regular expression standing alone is
 equivalent to the last regular expression encoun-
 tered.

 Regular expressions are used in addresses to specify
 lines and in one command (s_, see below) to specify a por-
 tion of a line which is to be replaced.

 If it is desired to use one of the regular expression
 metacharacters as an ordinary character, that character
 may be preceded by "\". This also applies to the charac-
 ter bounding the regular expression (often "/") and to
 "\" itself.

 Addresses are constructed as follows. To understand ad-
 dressing in e_d_ it is necessary to know that at any time
 there is a c_u_r_r_e_n_t_ l_i_n_e_. Generally speaking, the current
 line is the last line affected by a command; however, the
 exact effect on the current line by each command is dis-
 cussed under the description of the command.

 1. The character "." addresses the current line.

 2. The character "^" addresses the line immediately
 before the current line.

 3. The character "$" addresses the last line of the
 buffer.

 4. A decimal number n_ addresses the n_th line of the
 buffer.

 6. A regular expression enclosed in slashes "/" ad-
 dresses the first line found by searching toward
 the end of the buffer and stopping at the first
 line containing a string matching the regular ex-

 - 2 -

ED (I) 1/15/73 ED (I)

 pression. If necessary the search wraps around to
 the beginning of the buffer.

 5. A regular expression enclosed in queries "?" ad-
 dresses the first line found by searching toward
 the beginning of the buffer and stopping at the
 first line found containing a string matching the
 regular expression. If necessary the search wraps
 around to the end of the buffer.

 7. An address followed by a plus sign "+" or a minus
 sign "-" followed by a decimal number specifies
 that address plus (resp. minus) the indicated num-
 ber of lines. The plus sign may be omitted.

 8. "’x" addresses the line associated (marked) with
 the mark name character "x" which must be a print-
 able character. Lines may be marked with the "k"
 command described below.

 Commands may require zero, one, or two addresses. Com-
 mands which require no addresses regard the presence of
 an address as an error. Commands which accept one or two
 addresses assume default addresses when insufficient are
 given. If more addresses are given than such a command
 requires, the last one or two (depending on what is ac-
 cepted) are used.

 Addresses are separated from each other typically by a
 comma (,). They may also be separated by a semicolon
 (;). In this case the current line "." is set to the
 previous address before the next address is interpreted.
 This feature can be used to determine the starting line
 for forward and backward searches ("/", "?"). The second
 address of any two-address sequence must correspond to a
 line following the line corresponding to the first ad-
 dress.

 In the following list of e_d_ commands, the default ad-
 dresses are shown in parentheses. The parentheses are
 not part of the address, but are used to show that the
 given addresses are the default.

 As mentioned, it is generally illegal for more than one
 command to appear on a line. However, any command may be
 suffixed by "p" (for "print"). In that case, the current
 line is printed after the command is complete.

 (.)a
 <text>
 The a_ppend command reads the given text and appends it
 after the addressed line. "." is left on the last
 line input, if there were any, otherwise at the ad-
 dressed line. Address "0" is legal for this com-

 - 3 -

ED (I) 1/15/73 ED (I)

 mand; text is placed at the beginning of the buf-
 fer.

 (.,.)c
 <text>
 The c_hange command deletes the addressed lines, then
 accepts input text which replaces these lines. "."
 is left at the last line input; if there were none,
 it is left at the first line not changed.

 (.,.)d
 The d_elete command deletes the addressed lines from
 the buffer. The line originally after the last
 line deleted becomes the current line; if the lines
 deleted were originally at the end, the new last
 line becomes the current line.

 e filename
 The e_dit command causes the entire contents of the
 buffer to be deleted, and then the named file to be
 read in. "." is set to the last line of the buf-
 fer. The number of characters read is typed.
 "filename" is remembered for possible use as a de-
 fault file name in a subsequent r_ or w_ command.

 f filename
 The f_ilename command prints the currently remem-
 bered file name. If "filename" is given, the cur-
 rently remembered file name is changed to "file-
 name".

 (1,$)g/regular expression/command list
 In the g_lobal command, the first step is to mark
 every line which matches the given regular expres-
 sion. Then for every such line, the given command
 list is executed with "." initially set to that
 line. A single command or the first of multiple
 commands appears on the same line with the global
 command. All lines of a multi-line list except the
 last line must be ended with "\". a_, i_, and c_ com-
 mands and associated input are permitted; the "."
 terminating input mode may be omitted if it would
 be on the last line of the command list. The
 (global) commands, g_ and v_, are not permitted in
 the command list.

 (.)i
 <text>
 This command i_nserts the given text before the ad-
 dressed line. "." is left at the last line input;
 if there were none, at the addressed line. This
 command differs from the a_ command only in the
 placement of the text.

 - 4 -

ED (I) 1/15/73 ED (I)

 (.)kx
 The mark_ command associates or marks the addressed
 line with the single character mark name "x". The
 ten most recent mark names are remembered. The
 current mark names may be printed with the n_ com-
 mand.

 (.,.)mA
 The m_ove command will reposition the addressed
 lines after the line addressed by "A". The line
 originally after the last line moved becomes the
 current line; if the lines moved were originally at
 the end, the new last line becomes the current
 line.

 n
 The markn_ames command will print the current mark
 names.

 (.,.)p
 The p_rint command prints the addressed lines. "."
 is left at the last line printed. The p_ command
 m_a_y_ be placed on the same line after any command.

 q_
 The q_uit command causes e_d_ to exit. No automatic
 write of a file is done.

 ($)r filename
 The r_ead command reads in the given file after the
 addressed line. If no file name is given, the re-
 membered file name, if any, is used (see e_ and f_
 commands). The remembered file name is not changed
 unless "filename" is the very first file name men-
 tioned. Address "0" is legal for r_ and causes the
 file to be read at the beginning of the buffer. If
 the read is successful, the number of characters
 read is typed. "." is left at the last line read
 in from the file.

 (.,.)s/regular expression/replacement/ or,
 (.,.)s/regular expression/replacement/g
 The s_ubstitute command searches each addressed line
 for an occurrence of the specified regular expres-
 sion. On each line in which a match is found, all
 matched strings are replaced by the replacement
 specified, if the global replacement indicator "g"
 appears after the command. If the global indicator
 does not appear, only the first occurrence of the
 matched string is replaced. It is an error for the
 substitution to fail on all addressed lines. Any
 character other than space or new-line may be used
 instead of "/" to delimit the regular expression
 and the replacement. "." is left at the last line

 - 5 -

ED (I) 1/15/73 ED (I)

 substituted.

 The ampersand "&" appearing in the replacement is
 replaced by the regular expression that was
 matched. The special meaning of "&" in this con-
 text may be suppressed by preceding it by "\".

 (1,$)v/regular expression/command list
 This command is the same as the g_lobal command ex-
 cept that the command list is executed with "."
 initially set to every line e_x_c_e_p_t_ those matching
 the regular expression

 (1,$)w filename
 The w_rite command writes the addressed lines onto
 the given file. If the file does not exist, it is
 created mode 17 (readable and writeable by every-
 one). The remembered file name is n_o_t_ changed un-
 less "filename" is the very first file name men-
 tioned. If no file name is given, the remembered
 file name, if any, is used (see e_ and f_ commands).
 "." is unchanged. If the command is successful,
 the number of characters written is typed.

 ($)=
 The line number of the addressed line is typed.
 "." is unchanged by this command.

 !UNIX command
 The remainder of the line after the "!" is sent to
 UNIX to be interpreted as a command. "." is un-
 changed.

 (.+1)<newline>
 An address alone on a line causes that line to be
 printed. A blank line alone is equivalent to
 ".+1p"; it is useful for stepping through text.

 If an interrupt signal (ASCII DEL) is sent, e_d_ will print
 a "?" and return to its command level.

 If invoked with the command name ’-’, (see i_n_i_t_) e_d_ will
 sign on with the message "Editing system" and print "*"
 as the command level prompt character.

 E_d_ has size limitations on the maximum number of lines
 that can be edited, and on the maximum number of charac-
 ters in a line, in a global’s command list, and in a re-
 membered file name. These limitations vary with the
 physical core size of the PDP11 computer on which e_d_ is
 being used. The range of limiting sizes for the above
 mentioned items is; 1300 - 4000 lines per file, 256 - 512
 characters per line, 63 - 256 characters per global com-
 mand list, and 64 characters per file name.

 - 6 -

ED (I) 1/15/73 ED (I)

 FILES
 /tmp/etm? temporary
 /etc/msh to implement the "!" command.

SEE ALSO --

DIAGNOSTICS "?" for any error

BUGS --

 - 7 -

EXIT(I) 3/15/72 EXIT(I)

NAME exit -- terminate command file

SYNOPSIS e_x_i_t_

DESCRIPTION e_x_i_t_ performs a s_e_e_k_ to the end of its standard
 input file. Thus, if it is invoked inside a file
 of commands, upon return from e_x_i_t_ the shell will
 discover an end-of-file and terminate.

FILES --

SEE ALSO if(I), goto(I), sh(I)

DIAGNOSTICS --

BUGS --

 - 1 -

FACTOR (I) 1/15/73 FACTOR (I)

NAME factor -- discover prime factors of a number

SYNOPSIS f_a_c_t_o_r_

DESCRIPTION When factor is invoked, it types out "Enter:" at
 you. If you type in a positive number less than
 2^56 (about 7.2E16), it will repeat the number
 back at you and then its prime factors each one
 printed the proper number of times. Then it says
 "Enter:" again. To exit, feed it an EOT or a
 delete.

 Maximum time to factor is proportional to sqrt(n)
 and occurs when n is prime. It takes 1 minute to
 factor a prime near 10^13.

FILES --

SEE ALSO --

DIAGNOSTICS "Ouch." for input out of range or for garbage in-
 put.

BUGS --

 - 1 -

FC (I) 9/1/72 FC (I)

NAME fc -- fortran compiler

SYNOPSIS f_c_ [-_c_] sfile1._f_ ... ofile1 ...

DESCRIPTION f_c_ is the UNIX Fortran compiler. It accepts
 three types of arguments:

 Arguments whose names end with ".f" are assumed
 to be Fortran source program units; they are com-
 piled, and the object program is left on the file
 sfile1.o (i.e. the file whose name is that of
 the source with ".o" substituted for ".f").

 Other arguments (except for "-c") are assumed to
 be either loader flags, or object programs, typi-
 cally produced by an earlier f_c_ run, or perhaps
 libraries of Fortran-compatible routines. These
 programs, together with the results of any compi-
 lations specified, are loaded (in the order giv-
 en) to produce an executable program with name
 a_._o_u_t_.

 The "-c" argument suppresses the loading phase,
 as does any syntax error in any of the routines
 being compiled.

 The following is a list of differences between f_c_
 and ANSI standard Fortran (also see the BUGS sec-
 tion):

 1. Arbitrary combination of types is allowed in
 expressions. Not all combinations are expect-
 ed to be supported at runtime. All of the
 normal conversions involving integer, real,
 double precision and complex are allowed.

 2. The ’standard’ implicit statement is recog-
 nized.

 3. The types doublecomplex, logical*1, integer*2
 and real*8 (doubleprecision) are supported.

 4. &_ as the first character of a line signals a
 continuation card.

 5. c_ as the first character of a line signals a
 comment.

 6. All keywords are recognized in lower case.

 7. The notion of ’column 7’ is not implemented.

 8. G-format input is free form-- leading blanks
 are ignored, the first blank after the start

 - 1 -

FC (I) 9/1/72 FC (I)

 of the number terminates the field.

 9. A comma in any numeric or logical input field
 terminates the field.

 10. There is no carriage control on output.

 In I/O statements, only unit numbers 0-19 are
 supported. Unit number n_n_ corresponds to file
 "fortn_n_;" (e.g. unit 9 is file "fort09"). For
 input, the file must exist; for output, it will
 be created.

 Unit 5 is permanently associated with the stan-
 dard input file; unit 6 with the standard output
 file.

FILES file.f input file
 a.out loaded output
 f.tmp[123] temporary (deleted)
 /usr/fort/fc[1234] compilation phases
 /usr/lib/fr0.o runtime startoff
 /usr/lib/filib.a interpreter library
 /usr/lib/libf.a builtin functions, etc.
 /usr/lib/liba.a system library

SEE ALSO ANSI standard

DIAGNOSTICS Compile-time diagnostics are given by number. If
 the source code is available, it is printed with
 an underline at the current character pointer.
 Errors possible are:

 1 statement too long
 2 syntax error in type statement
 3 redeclaration
 4 missing (in array declarator
 5 syntax error in dimension statement
 6 inappropriate or gratuitous array
 declarator
 7 syntax error in subscript bound
 8 illegal character
 9 common variable is a parameter or already
 in common
 10 common syntax error
 11 subroutine/blockdata/function not first
 statement
 12 subroutine/function syntax error
 13 block data syntax error
 14 redeclaration in external
 15 external syntax error
 16 implicit syntax error
 17 subscript on non-array
 18 incorrect subscript count

 - 2 -

FC (I) 9/1/72 FC (I)

 19 subscript out of range
 20 subscript syntax error
 22 DATA syntax error
 23 Illegal variable in DATA
 23 equivalence inconsistency
 24 equivalence syntax error
 25 separate common blocks equivalenced
 26 common block illegally extended by equiv-
 alence
 27 common inconsistency created by equiva-
 lence
 28 DATA table overflow
 29 () imbalance in expression
 30 expression syntax error
 31 illegal variable in equivalence
 32 Storage initialized twice by DATA
 33 non array/function used with sub-
 scripts/arguments
 35 goto syntax error
 37 illegal return
 38 continue, return, stop, call, end, or
 pause syntax error
 39 assign syntax error
 40 if syntax error
 41 I/O syntax error
 42 do or I/O iteration error
 43 do end missing
 50 illegal statement in block data
 51 multiply defined labels
 52 undefined label
 53 dimension mismatch
 54 expression syntax error
 55 end of statement in hollerith constant
 56 array too large
 99 B table overflow
 101 unrecognized statement

 Runtime diagnostics:

 1 invalid log argument
 2 bad arg count to amod
 3 bad arg count to atan2
 4 excessive argument to cabs
 5 exp too large in cexp
 6 bad arg count to cmplx
 7 bad arg count to dim
 8 excessive argument to exp
 9 bad arg count to idim
 10 bad arg count to isign
 11 bad arg count to mod
 12 bad arg count to sign
 13 illegal argument to sqrt
 14 assigned/computed goto out of range
 15 subscript out of range

 - 3 -

FC (I) 9/1/72 FC (I)

 16 real**real overflow

 100 illegal I/O unit number
 101 inconsistent use of I/O unit
 102 cannot create output file
 103 cannot open input file
 104 EOF on input file
 105 illegal character in format
 106 format does not begin with (
 107 no conversion in format but non-empty
 list
 108 excessive parenthesis depth in format
 109 illegal format specification
 110 illegal character in input field
 111 end of format in hollerith specification
 999 unimplemented input conversion

BUGS The following is a list of those features not yet
 implemented:

 arithmetic statement functions

 backspace, endfile, rewind runtime

 binary I/O

 no scale factors on input

 - 4 -

FED (I) 1/15/73 FED (I)

NAME
 fed -- edit associative memory for form letter

SYNOPSIS
 f_e_d_

DESCRIPTION
 f_e_d_ is used to edit a form letter associative
 memory file, form.m, which consists of named
 strings. Commands consist of single letters fol-
 lowed by a list of string names separated by a
 single space and ending with a new line. The
 conventions of the Shell with respect to ’*’ and
 ’?’ hold for all commands but m_ where literal
 string names are expected. The commands are:

 e name918 ...

 e_dit writes the string whose name is name918
 onto a temporary file and executes the sys-
 tem editor e_d_. On exit from the system edi-
 tor the temporary file is copied back into
 the associative memory. Each argument is
 operated on separately. The sequence of
 commands to add the string from ’file’ to
 memory with name ’newname’ is as follows:

 e newname 0 (printed
 by ed) r file 200 w
 200 q (get out of ed)
 q (get out of fe)

 To dump a string onto a file:

 e name 200 (printed by
 ed) w filename 200
 q (get out of ed)
 q (get out of fe)

 d [name918 ...]

 d_eletes a string and its name from the memo-
 ry. When called with no arguments d_ oper-
 ates in a verbose mode typing each string
 name and deleting only if a ’y’ is typed. A
 ’q’ response returns to fed’s command level.
 Any other response does nothing.

 m name918 name928 ...

 (m_ove) changes the name of name918 to
 name928 and removes previous string name928

 - 1 -

FED (I) 1/15/73 FED (I)

 if one exists. Several pairs of arguments
 may be given.

 n [name918 ...]

 (n_ames) lists the string names in the memo-
 ry. If called with the optional arguments,
 it just lists those requested.

 p name918 ...

 p_rints the contents of the strings with
 names given by the arguments.

 q (q_uit) returns to the system.

 c [p_] [f_]

 c_hecks the associative memory file for con-
 sistency and reports the number of free
 headers and blocks. The optional arguments
 do the following:

 p causes any unaccounted for string to be
 printed

 f fixes broken memories by adding unac-
 counted-for headers to free storage and
 removing references to released headers
 from associative memory.

FILES /tmp/ftmp? temporary
 form.m associative memory

SEE ALSO form(I), ed(I), sh(I)

DIAGNOSTICS ’?’ unknown command
 ’name not in memory.’ if string ’name’ is not in
 the associative memory and is used as an argument
 for d_ or m_.

BUGS --

WARNING It is legal but an unwise idea to have string
 names with blanks, ":" or "?" in them.

 - 2 -

FORM (I) 6/15/72 FORM (I)

NAME
 form -- form letter generator

SYNOPSIS
 f_o_r_m_ proto arg918 ...

DESCRIPTION
 f_o_r_m_ generates a form letter from a prototype
 letter, an associative memory, arguments and in a
 special case, the current date.

 If f_o_r_m_ is invoked with the p_r_o_t_o_ argument ’x’,
 the associative memory is searched for an entry
 with name ’x’ and the contents filed under that
 name are used as the prototype. If the search
 fails, the message "[x]:" is typed on the console
 and whatever text is typed in from the console,
 terminated by two new lines, is used as the pro-
 totype.

 If the prototype argument is missing, ’{letter}’
 is assumed.

 Basically, f_o_r_m_ is a copy process from the proto-
 type to the output file. If an element of the
 form [n] (where n_ is a digit from 1 to 9) is en-
 countered, the n_th argument a_r_g_9n8 is inserted in
 its place, and that argument is then rescanned.
 If [0] is encountered, the current date is in-
 serted. If the desired argument has not been
 given, a message of the form "[n]:" is typed.
 The response typed in then is used for that argu-
 ment.

 If an element of the form [name] or {name} is en-
 countered, the name is looked up in the associa-
 tive memory. If it is found, the contents of the
 memory under this name replaces the original ele-
 ment (again rescanned). If the name is not
 found, a message of the form "[name]:" is typed.
 The response typed in is used for that element.
 The response is entered in the memory under the
 name if the name is enclosed in []. The response
 is not entered in the memory but is remembered
 for the duration of the letter if the name is en-
 closed in {}.

 In both of the above cases, the response is typed
 in by entering arbitrary text terminated by two
 new lines. Only the first of the two new lines
 is passed with the text.

 If one of the special characters [{]}\ is preced-
 ed by a \, it loses its special character.

 - 1 -

FORM (I) 6/15/72 FORM (I)

 If a file named "forma" already exists in the
 users directory, "formb" is used as the output
 file and so forth to "formz".

 The file "form.m" is created if none exists. Be-
 cause form.m is operated on by the disc allo-
 cater, it should only be changed by using f_e_d_,
 the form letter editor, or f_o_r_m_.

FILES
 form.m associative memory
 form? output file (read only)

SEE ALSO
 fed(I), type(I), roff(I)

DIAGNOSTICS
 "cannot open output file" "cannot open memory
 file" when the appropriate files cannot be locat-
 ed or created.

BUGS
 An unbalanced] or } acts as an end of file but
 may add a few strange entries to the associative
 memory.

 - 2 -

FORML (I) 10/24/72 FORML (I)

NAME forml -- form letter generator processor

SYNOPSIS f_o_r_m_l_ [name] ...

DESCRIPTION A streamlined program for typing form letters.
 The names pick out prestored form letters pre-
 pared according to the conventions of _f_o_r_m and
 _r_o_f_f_. The program prompts to get each blank
 filled in. When all the forms are completed, it
 prompts "Set paper." It waits for a newline be-
 fore printing each letter.

 If more than one name is given, the name of each
 letter is announced before the prompts for it be-
 gin. If no names are given, the program asks
 "Which letter?" before each. Respond with the
 name and a newline, or newline only when done.

 On a 2741 type terminal, the program assumes the
 letter is to be typed with a correspondence ball,
 and also prompts "Change ball." Replace the ball
 at the end.

FILES form.m (memory),
 forma, formb, ... temporaries

SEE ALSO form(I), fed(I), roff(I)

DIAGNOSTICS "Try again"--can’t get a process

BUGS --

 - 1 -

GOTO (I) 3/15/72 GOTO (I)

NAME goto -- command transfer

SYNOPSIS g_o_t_o_ label

DESCRIPTION g_o_t_o_ is only allowed when the Shell is taking
 commands from a file. The file is searched (from
 the beginning) for a line beginning with ":" fol-
 lowed by one or more spaces followed by the la-
 __b_e_l_. If such a line is found, the g_o_t_o_ command
 returns. Since the read pointer in the command
 file points to the line after the label, the ef-
 fect is to cause the Shell to transfer to the la-
 belled line.

 ":" is a do-nothing command that only serves to
 place a label.

FILES --

SEE ALSO sh(I), :(I)

DIAGNOSTICS "goto error", if the input file is a typewriter;
 "label not found".

BUGS --

 - 1 -

HYPHEN (I) 1/15/73 HYPHEN (I)

NAME hyphen -- find hyphenated words

SYNOPSIS h_y_p_h_e_n_ file1 ...

DESCRIPTION It finds all of the words in a document which are
 hyphenated across lines and prints them back at
 you in a convenient format.

 If no arguments are given, the standard output is
 used. Thus h_y_p_h_e_n_ may be used as a filter.

FILES --

SEE ALSO --

DIAGNOSTICS yes

BUGS yes, it gets confused, but with no ill effects
 other than spurious extra output.

 - 1 -

IF (I) 3/15/72 IF (I)

NAME if -- conditional command

SYNOPSIS i_f_ expr command [arg918 ...]

DESCRIPTION i_f_ evaluates the expression e_x_p_r_, and if its val-
 ue is t_r_u_e_, executes the given c_o_m_m_a_n_d_ with the
 given arguments.

 The following primitives are used to construct
 the e_x_p_r_:

 -_r_ file
 true if the file exists and is readable.

 -_w_ file
 true if the file exists and is writable

 s1 =_ s2
 true if the strings s_1_ and s_2_ are equal.

 s1 !_=_ s2
 true if the strings s_1_ and s_2_ are not
 equal.

 These primaries may be combined with the follow-
 ing operators:

 !_
 unary negation operator

 -_a_
 binary a_n_d_ operator

 -_o_
 binary o_r_ operator

 (_ expr)_
 parentheses for grouping.

 -_a_ has higher precedence than -_o_. Notice that
 all the operators and flags are separate argu-
 ments to i_f_ and hence must be surrounded by spa-
 ces.

FILES --

SEE ALSO sh(I)

DIAGNOSTICS "if error", if the expression has the wrong syn-
 tax; "command not found."

BUGS --

 - 1 -

LD (I) 3/15/72 LD (I)

NAME ld -- link editor

SYNOPSIS l_d_ [-_s_u_l_x_r_] name1 ...

DESCRIPTION l_d_ combines several object programs into one;
 resolves external references; and searches li-
 braries. In the simplest case the names of sev-
 eral object programs are given, and l_d_ combines
 them, producing an object module which can be ei-
 ther executed or become the input for a further
 l_d_ run. In the latter case, the "-r" option must
 be given to preserve the relocation bits.

 The argument routines are concatenated in the or-
 der specified. The entry point of the output is
 the beginning of the first routine.

 If any argument is a library, it is searched ex-
 actly once. Only those routines defining an un-
 resolved external reference are loaded. If a
 routine from a library references another routine
 in the library, the referenced routine must ap-
 pear after the referencing routine in the li-
 brary. Thus the order of programs within li-
 braries is important.

 l_d_ understands several flag arguments which are
 written preceded by a "-":

 -s "squash" the output, that is, remove the
 symbol table and relocation bits to save
 space (but impair the usefulness of the de-
 bugger). This information can also be re-
 moved by s_t_r_i_p_.

 -u take the following argument as a symbol and
 enter it as undefined in the symbol table.
 This is useful for loading wholly from a
 library, since initially the symbol table
 is empty and an unresolved reference is
 needed to force the loading of the first
 routine.

 -l This option is an abbreviation for a li-
 brary name. "-l" alone stands for
 "/usr/lib/liba.a", which is the standard
 system library for assembly language pro-
 grams. "-lx" stands for "/usr/lib/libx.a"
 where x is any character. There are li-
 braries for Fortran (x="f"), C (x="c"), Ex-
 plor (x="e") and B (x="b").

 -x Do not preserve local (non-.globl) symbols
 in the output symbol table; only enter ex-

 - 1 -

LD (I) 3/15/72 LD (I)

 ternal symbols. This option saves some
 space in the output file.

 -r generate relocation bits in the output file
 so that it can be the subject of another l_d_
 run.

 The output of l_d_ is left on a_._o_u_t_. This file is
 executable only if no errors occurred during the
 load.

FILES /usr/lib/lib?.a libraries
 a.out output file

SEE ALSO as(I), ar(I)

DIAGNOSTICS "file not found"-- bad argument

 "bad format"-- bad argument

 "relocation error"-- bad argument (relocation
 bits corrupted)

 "multiply defined"-- same symbol defined twice in
 same load

 "un"-- stands for "undefined symbol"

 "symbol not found"-- loader bug

 "can’t move output file"-- can’t move temporary
 to a.out file

 "no relocation bits"-- an input file lacks relo-
 cation information

 "too many symbols"-- too many references to ex-
 ternal symbols in a given routine

 "premature EOF"

 "can’t create l.out"-- cannot make temporary file

 "multiple entry point"-- more than one entry
 point specified (not possible yet).

BUGS --

 - 2 -

LN (I) 3/15/72 LN (I)

NAME ln -- make a link

SYNOPSIS l_n_ name1 [name2]

DESCRIPTION l_n_ creates a link to an existing file name1. If
 name2 is given, the link has that name; otherwise
 it is placed in the current directory and its
 name is the last component of name1.

 It is forbidden to link to a directory or to link
 across file systems.

FILES --

SEE ALSO rm(I)

DIAGNOSTICS "?"

BUGS There is nothing particularly wrong with l_n_, but
 links don’t work right with respect to the backup
 system: one copy is backed up for each link, and
 (more serious) in case of a file system reload
 both copies are restored and the information that
 a link was involved is lost.

 - 1 -

LOGIN (I) 3/15/72 LOGIN (I)

NAME login -- sign onto UNIX

SYNOPSIS l_o_g_i_n_ [username [password]]

DESCRIPTION The l_o_g_i_n_ command is used when a user initially
 signs onto UNIX, or it may be used at any time to
 change from one user to another. The latter case
 is the one summarized above and described here.
 See l_o_g_i_n_ (VII) for how to dial up initially.

 If l_o_g_i_n_ is invoked without an argument, it will
 ask for a user name, and, if appropriate, a pass-
 word. Echoing is turned off (if possible) during
 the typing of the password, so it will not appear
 on the written record of the session.

 After a successful login, accounting files are
 updated and the user is informed of the existence
 of mailbox and message-of-the-day files.

 Login is recognized by the Shell and executed di-
 rectly (without forking).

FILES /tmp/utmp accounting
 /tmp/wtmp accounting
 mailbox mail
 /etc/motd message-of-the-day /etc/pass-
 wd password file

SEE ALSO login(VII), init(VII), getty(VII), mail(I)

DIAGNOSTICS "login incorrect", if the name or the password is
 bad. "No Shell,", "cannot open password file,"
 "no directory:" consult a UNIX programming coun-
 cilor.

BUGS --

 - 1 -

LS (I) 3/15/72 LS (I)

NAME ls -- list contents of directory

SYNOPSIS l_s_ [-_l_t_a_s_d_] name1 ...

DESCRIPTION l_s_ lists the contents of one or more directories
 under control of several options:

 -l list in l_ong format, giving i-number, mode,
 owner, size in bytes, and time of last modi-
 fication for each file. (see s_t_a_t_ for for-
 mat of the mode)

 -t sort by time modified (latest first) instead
 of by name, as is normal

 -a list all entries; usually those beginning
 with "." are suppressed

 -s give size in blocks for each entry

 -d if argument is a directory, list only its
 name, not its contents (mostly used with
 "-l" to get status on directory)

 If no argument is given, "." is listed. If an
 argument is not a directory, its name is given.

FILES /etc/passwd to get user ID’s for ls -l

SEE ALSO stat(I)

DIAGNOSTICS "name nonexistent"; "name unreadable"; "name un-
 statable."

BUGS --

 - 1 -

M6 (I) 11/15/72 M6 (I)

NAME m6 -- general purpose macro processor

SYNOPSIS m_6_ [-_d_ arg1] [arg2 [arg3]]

DESCRIPTION m_6_ takes input from file arg2 (or standard input
 if arg2 is missing) and places output on file
 arg3 (or standard output). A working file of
 definitions, "m.def", is initialized from file
 arg1 if that is supplied. M6 differs from the
 standard [1] in these respects:

 #trace:, #source: and #end: are not defined.

 #meta,arg1,arg2: transfers the role of metachar-
 acter arg1 to character arg2. If two metacharac-
 ters become identical thereby, the outcome of
 further processing is not guaranteed. For exam-
 ple, to make []{} play the roles of #:<> type

 \.br [meta,<:>,]:
 [meta,[substr,<<>>,1,1;,{]
 [meta,[substr,{{>>,2,1;,}]

 #del,arg1: deletes the definition of macro arg1.

 #save: and #rest: save and restore the definition
 table together with the current metacharacters on
 file m.def.

 #def,arg1,arg2,arg3: works as in the standard
 with the extension that an integer may be sup-
 plied to arg3 to cause the new macro to perform
 the action of a specified builtin before its re-
 placement text is evaluated. Thus all builtins
 except #def: can be retrieved even after dele-
 tion. Codes for arg3 are:

 0 - no function
 1,2,3,4,5,6 - gt,eq,ge,lt,ne,le
 7,8 - seq,sne
 9,10,11,12,13 - add,sub,mpy,div,exp
 20 - if
 21,22 - def,copy
 23 - meta
 24 - size
 25 - substr
 26,27 - go,gobk
 28 - del
 29 - dnl
 30,31 - save,rest

FILES m.def--working file of definitions
 /usr/lang/mdir/m6a--m6 processor proper
 (/usr/bin/m6 is only an initializer)

 - 1 -

M6 (I) 11/15/72 M6 (I)

 /usr/lang/mdir/m6b--default initialization for
 m.def
 /bin/cp--used for copying initial value of m.def

SEE ALSO [1] A. D. Hall, The M6 Macroprocessor, Bell Tele-
 phone Laboratories, 1969

DIAGNOSTICS "err" -- a bug, an unknown builtin or a bad defi-
 nition table
 "oprd"--can’t open input or initial definitions
 "opwr"--can’t open output
 "ova" -- overflow of nested arguments
 "ovc" -- overflow of calls
 "ovd" -- overflow of definitions
 "Try again" -- no process available for copying
 m.def

BUGS Characters in internal tables are stored one per
 word. They really should be packed to improve
 capacity. For want of space (and because of un-
 packed formats) no file arguments have been pro-
 vided to #save: or #rest:, and no check is made
 on the actual opening of file m.def. Again to
 save space, garbage collection makes calls on
 #save: and #rest: and so overwrites m.def.

 - 2 -

MAIL (I) 10/25/72 MAIL (I)

NAME mail -- send mail to another user

SYNOPSIS m_a_i_l_ [-_y_n_]
 _m_a_i_l letter person ...
 m_a_i_l_ person

DESCRIPTION m_a_i_l_ without an argument searches for a file
 called m_a_i_l_b_o_x_, prints it if present, and asks if
 it should be saved. If the answer is "y", the
 mail is renamed m_b_o_x_, otherwise it is deleted.
 M_a_i_l_ with a -_y_n_ argument works the same way, ex-
 cept that the answer to the question is supplied
 by the argument.

 When followed by the names of a letter and one or
 more people, the letter is appended to each per-
 son’s m_a_i_l_b_o_x_. When a p_e_r_s_o_n_ is specified with-
 out a l_e_t_t_e_r_, the letter is taken from the
 sender’s standard input up to an EOT. Each let-
 ter is preceded by the sender’s name and a post-
 mark.

 A p_e_r_s_o_n_ is either a user name recognized by lo-
 __g_i_n_, in which case the mail is sent to the de-
 fault working directory of that user, or the path
 name of a directory, in which case m_a_i_l_b_o_x_ in
 that directory is used.

 When a user logs in he is informed of the pres-
 ence of mail.

FILES /etc/passwd to identify sender
 to locate persons
 mailbox input mail
 mbox saved mail

SEE ALSO login(I)

DIAGNOSTICS "Who are you?" if the user cannot be identified
 for some reason (a bug). "Cannot send to user"
 if m_a_i_l_b_o_x_ cannot be opened.

BUGS --

 - 1 -

MAN (I) 3/15/72 MAN (I)

NAME man -- run off section of UNIX manual

SYNOPSIS m_a_n_ title [section]

DESCRIPTION m_a_n_ is a shell command file that will locate and
 run off a particular section of this manual. Ti-
 tle is the the desired part of the manual. Sec-
 tion is the section number of the manual. (In
 Arabic, not Roman numerals.) If section is miss-
 ing, 1_ is assumed. For example,

 man man

 would reproduce this page.

FILES /sys/man/man?/*

SEE ALSO sh(I), roff(I)

DIAGNOSTICS "File not found", "Usage .."

BUGS --

 - 1 -

MESG (I) 3/15/72 MESG (I)

NAME mesg -- permit or deny messages

SYNOPSIS m_e_s_g_ [n_][y_]

DESCRIPTION m_e_s_g_ n_ forbids messages via w_r_i_t_e_ by revoking
 non-user write permission on the user’s typewrit-
 er. m_e_s_g_ y_ reinstates permission. m_e_s_g_ with no
 argument reverses the current permission. In all
 cases the previous state is reported.

FILES /dev/tty?

SEE ALSO write(I)

DIAGNOSTICS "?" if the standard input file is not a typewrit-
 er

BUGS --

 - 1 -

MKDIR (I) 3/15/72 MKDIR (I)

NAME mkdir -- make a directory

SYNOPSIS m_k_d_i_r_ dirname ...

DESCRIPTION m_k_d_i_r_ creates specified directories in mode 17.

 The standard entries "." and ".." are made auto-
 matically.

FILES --

SEE ALSO rmdir(I)

DIAGNOSTICS "dirname ?"

BUGS --

 - 1 -

MT (I) 6/12/72 MT (I)

NAME mt -- manipulate magtape

SYNOPSIS m_t_ [key] [name ...]

DESCRIPTION m_t_ saves and restores selected portions of the
 file system hierarchy on magtape. Its actions
 are controlled by the k_e_y_ argument. The key is a
 string of characters containing at most one func-
 tion letter and possibly one or more function
 modifiers. Other arguments to the command are
 file or directory names specifying which files
 are to be dumped, restored, or tabled.

 The function portion of the key is specified by
 one of the following letters:

 r The indicated files and directories, to-
 gether with all subdirectories, are dumped
 onto the tape. The old contents of the
 tape are lost.

 x extracts the named files from the tape to
 the file system. The owner, mode, and
 date-modified are restored to what they
 were when the file was dumped. If no file
 argument is given, the entire contents of
 the tape are extracted.

 t lists the names of all files stored on the
 tape which are the same as or are hierar-
 chically below the file arguments. If no
 file argument is given, the entire contents
 of the tape are tabled.

 l is the same as t_ except that an expanded
 listing is produced giving all the avail-
 able information about the listed files.

 The following characters may be used in addition
 to the letter which selects the function desired.

 0, ..., 7 This modifier selects the drive on
 which the tape is mounted. "0" is the de-
 fault.

 v Normally m_t_ does its work silently. The v_
 (verbose) option causes it to type the name
 of each file it treats preceded by a letter
 to indicate what is happening.

 a file is being added
 x file is being extracted

 The v_ option can be used with r_ and x_ only.

 - 1 -

MT (I) 6/12/72 MT (I)

 f causes new entries copied on tape to be
 ’fake’ in that only the entries, not the
 data associated with the entries are updat-
 ed. Such fake entries cannot be extracted.
 Usable only with r_.

 w causes m_t_ to pause before treating each
 file, type the indicative letter and the
 file name (as with v_) and await the user’s
 response. Response "y" means "yes", so the
 file is treated. Null response means "no",
 and the file does not take part in whatever
 is being done. Response "x" means "exit";
 the m_t_ command terminates immediately. In
 the x_ function, files previously asked
 about have been extracted already. With r_,
 no change has been made to the tape.

 m make (create) directories during an x_ if
 necessary.

FILES /dev/mt?

SEE ALSO tap(I), tap(V)

DIAGNOSTICS Tape open error
 Tape read error
 Tape write error
 Directory checksum
 Directory overflow
 Seek error
 Tape overflow
 Phase error (a file has changed after it was se-
 lected for dumping but before it was dumped)

BUGS If, during an "x", the files are specified in a
 different order than they are on the tape, seek
 errors will result because the tape cannot be re-
 wound.

 - 2 -

MV (I) 2/9/73 MV (I)

NAME mv -- move or rename a file

SYNOPSIS m_v_ name1 name2

DESCRIPTION m_v_ changes the name of name1 to name2. If name2
 is a directory, name1 is moved to that directory
 with its original file-name. Directories may on-
 ly be moved within the same parent directory
 (just renamed).

FILES --

SEE ALSO --

DIAGNOSTICS yes

BUGS --

 - 1 -

NM (I) 3/15/72 NM (I)

NAME nm -- print name list

SYNOPSIS n_m_ [name]

DESCRIPTION n_m_ prints the symbol table from the output file
 of an assembler or loader run. Each symbol name
 is preceded by its value (blanks if undefined)
 and one of the letters "U" (undefined) "A" (abso-
 lute) "T" (text segment symbol), "D" (data seg-
 ment symbol), or "B" (bss segment symbol). Glob-
 al symbols have their first character underlined.
 The output is sorted alphabetically.

 If no file is given, the symbols in a_._o_u_t_ are
 listed.

FILES a.out

SEE ALSO as(I), ld(I)

DIAGNOSTICS "?"

BUGS --

 - 1 -

NROFF (I) 1/15/73 NROFF (I)

NAME nroff -- format text

SYNOPSIS n_r_o_f_f_ [+_N] [-_s_] [-_h_] [-_q_] [-_i_] files

DESCRIPTION n_r_o_f_f_ formats text according to control lines em-
 bedded in the text files. The non-file option
 arguments are interpreted as follows:

 +N Output will commence at the first page
 whose page number is N (independent of
 whether or not the page number is being
 printed).

 -s Stop between pages. Printing will halt pri-
 or to each page (including the first) to
 permit paper loading and changing. Printing
 is restarted by typing either a "newline"
 or "delete" character.

 -h High-speed output. During output, strings
 of space characters are replaced where pos-
 sible with tab characters to speed up out-
 put. Futhermore, if the output is directed
 into a file or a pipe, this mode effective-
 ly reduces the total number of characters
 in the file or pipe; this is especially im-
 portant in multi-column output where the
 temporary file(s) or pipe(s) would other-
 wise contain a large number of space char-
 acters.

 -q The prompt names for insertions are not
 printed and the bell character is sent in-
 stead; in addition, the insertion is not
 echoed. This mode permits insertions during
 the actual output printing

 -i Index mode. NROFF creates a file called
 "index" containing every word output to-
 gether with the line and page number. The
 format is word, tab, page, tab, line, new-
 line, etc. Invoking this mode slows down
 the execution of NROFF considerably.

 Nroff is more completely described in [1]. A
 condensed Request Summary is included here.

FILES /etc/suftab suffix hyphenation tables
 /tmp/rtm? temporary

SEE ALSO [1] NROFF User’s Manual (available as
 MM-73-1271-2).

DIAGNOSTICS none

 - 1 -

NROFF (I) 1/15/73 NROFF (I)

BUGS -

 - 2 -

NROFF (I) 1/15/73 NROFF (I)

 REQUEST REFERENCE AND INDEX

Request Initial If no Cause
F_o_r_m_ V_a_l_u_e_ A_r_g_u_m_e_n_t_ B_r_e_a_k_ E_x_p_l_a_n_a_t_i_o_n_

I. P_a_g_e_ C_o_n_t_r_o_l_

.pl +_N N=66 N=66 no P_age L_ength.

.bp +_N N=1 - yes B_egin P_age.

.pn +_N N=1 ignored no P_age N_umber.

.po +_N N=0 N=prev no P_age O_ffset.

.ne N - N=1 no N_E_ed N lines.

II. T_e_x_t_ F_i_l_l_i_n_g_, A_d_j_u_s_t_i_n_g_, a_n_d_ C_e_n_t_e_r_i_n_g_

.br - - yes B_R_eak.

.fi fill - yes F_I_ll output lines.

.nf fill - yes N_oF_ill.

.ad c adj,norm adjust no A_D_just mode on.

.na adjust - no N_oA_djust.

.ce N off N=1 yes C_E_nter N input text lines.

III. L_i_n_e_ S_p_a_c_i_n_g_ a_n_d_ B_l_a_n_k_ L_i_n_e_s_

.ls +_N N=1 N=prev no L_ine S_pacing.

.sp N - N=1 yes S_P_ace N lines

.lv N - N=1 no OR-

.sv N - N=1 no S_aV_e N lines.

.os - - no O_utput S_aved lines.

.ns space - no N_o-S_pace mode on.

.rs - - no R_estore S_pacing.

.xh off - no EX_tra-H_alf-line mode on.

IV. L_i_n_e_ L_e_n_g_t_h_ a_n_d_ I_n_d_e_n_t_i_n_g_

.ll +_N N=65 N=prev no L_ine L_ength.

.in +_N N=0 N=prev yes I_N_dent.

.ti +_N - N=1 yes T_emporary I_ndent.

V. M_a_c_r_o_s_, D_i_v_e_r_s_i_o_n_, a_n_d_ L_i_n_e_ T_r_a_p_s_

.de xx - ignored no D_E_fine or redefine a macro.

.rm xx - - no R_eM_ove macro name.

.di xx - end no D_I_vert output to macro "xx".

.wh -_N xx - no W_H_en; set a line trap.

.ch -_N -_M - no OR-

.ch xx -_M - no OR-

.ch -_N y - no OR-

.ch xx y - no C_H_ange trap line.

VI. N_u_m_b_e_r_ R_e_g_i_s_t_e_r_s_

.nr a +_N -_M - no OR-

.nr ab +_N -_M - no N_umber R_egister.

.tl ’’- % -’’

.tl ’NROFF (I)’1/15/73’NROFF (I)’

.nc c \n \n no N_umber C_haracter.

.ar arabic - no Arabic numbers.

.ro arabic - no Roman numbers.

.RO arabic - no ROMAN numbers.

VII. I_n_p_u_t_ a_n_d_ O_u_t_p_u_t_ C_o_n_v_e_n_t_i_o_n_s_ a_n_d_ C_h_a_r_a_c_t_e_r_ T_r_a_n_s_l_a_t_i_o_n_s_

.ta N,M,... none no PseudoT_A_bs setting.

.tc c space space no T_ab replacement C_haracter.

.lc c . . no L_eader replacement C_haracter.

.ul N - N=1 no U_N_derline input text lines.

.cc c . . no Basic C_ontrol C_haracter.

.c2 c ’ ’ no Nobreak control character.

.li N - N=1 no Accept input lines L_I_terally.

.tr abcd.... - no T_R_anslate on output.

VIII. H_y_p_h_e_n_a_t_i_o_n_.

.nh on - no N_o H_yphen.

.hy on - no H_Y_phenate.

.hc c none none no H_yphenation indicator C_haracter.

IX. T_h_r_e_e_ P_a_r_t_ T_i_t_l_e_s_.

.tl ’left’center’right’ no T_itL_e.

.lt N N=65 N=prev no L_ength of T_itle.

X. O_u_t_p_u_t_ L_i_n_e_ N_u_m_b_e_r_i_n_g_.

.nm +_N M S I off no N_umber M_ode on or off, set parameters.

.np M S I reset no N_umber P_arameters set or reset.

XI. C_o_n_d_i_t_i_o_n_a_l_ I_n_p_u_t_ L_i_n_e_ A_c_c_e_p_t_a_n_c_e_

.if c anything - no OR-

.if !c anything - no OR-

.if N anything - no OR-

.if !N anything - no I_F_ true accept line of "anything".

XII. E_n_v_i_r_o_n_m_e_n_t_ S_w_i_t_c_h_i_n_g_.

.ev N N=0 N=prev no E_nV_ironment switched.

XIII. I_n_s_e_r_t_i_o_n_s_ f_r_o_m_ t_h_e_ S_t_a_n_d_a_r_d_ I_n_p_u_t_ S_t_r_e_a_m_

.rd prompt bell no R_eaD_ insert.

.ex - - no E_X_it.

XIV. I_n_p_u_t_ F_i_l_e_ S_w_i_t_c_h_i_n_g_

.so filename - no Switch S_O_urce file (push down).

.nx filename - no N_eX_t file.

.sp
XV. M_i_s_c_e_l_l_a_n_e_o_u_s_

.tl ’’- % -’’

.tl ’NROFF (I)’1/15/73’NROFF (I)’

.ig - - no I_G_nore.

.fl - - no F_L_ush output buffer.

.ab - - no A_B_ort.

 - 5 -

OD (I) 1/15/73 OD (I)

NAME od -- octal dump

SYNOPSIS o_d_ [-_a_b_c_d_h_o_] [file] [[+_]offset[._][b_]]

DESCRIPTION o_d_ dumps f_i_l_e_ in one or more formats as selected
 by the first argument. (If the first argument is
 missing, -_o_ is default.) The meanings of the
 format argument characters are:

 a_ interprets words as PDP-11 instructions and
 dis-assembles the operation code. Unknown
 operation codes print as ???.

 b_ interprets bytes in octal.

 c_ interprets bytes in ascii. Unknown ascii
 characters are printed as \?.

 d_ interprets words in decimal.

 h_ interprets words in hex.

 o_ interprets words in octal.

 The file argument specifies which file is to be
 dumped. If no file argument is specified, the
 standard input is used. Thus od can be used as a
 filter.

 The offset argument specifies the offset in the
 file where dumping is to commence. This argument
 is normally interpreted as octal bytes. If ’.’
 is appended, the offset is interpreted in deci-
 mal. If ’b’ is appended, the offset is inter-
 preted in blocks. (A block is 512 bytes.) If
 the file argument is omitted, the offset argument
 must be preceded by ’+’.

 Dumping continues until an end-of-file condition
 or until halted by sending an interrupt signal.

FILES --

SEE ALSO db(I)

DIAGNOSTICS --

BUGS --

 - 1 -

OPR (I) 1/15/73 OPR (I)

NAME opr -- off line print

SYNOPSIS o_p_r_ [-_-_] [-_] [+_] [+_-_]file918 ...

DESCRIPTION o_p_r_ will arrange to have the 201 data phone dae-
 mon submit a job to the Honeywell 6070 to print
 the file arguments. Normally, the output appears
 at the GCOS central site. If the first argument
 is -_-_, the output is remoted to station R1.
 (Station R1 has a 1403 printer.)

 Normally, each file is printed in the state it is
 found when the data phone daemon reads it. If a
 particular file argument is preceded by +_, or a
 preceding argument of +_ has been encountered,
 then o_p_r_ will make a copy for the daemon to
 print. If the file argument is preceded by -_, or
 a preceding argument of -_ has been encountered,
 then opr will unlink (remove) the file.

 If there are no arguments except for the optional
 -_-_, then the standard input is read and off-line
 printed. Thus o_p_r_ may be used as a filter.

FILES /usr/dpd/* spool area
 /etc/passwd personal ident cards
 /etc/dpd daemon

SEE ALSO dpd(I), passwd(V)

DIAGNOSTICS --

BUGS --

 - 1 -

OV (I) 6/12/72 OV (I)

NAME ov -- overlay pages

SYNOPSIS o_v_ [file]

DESCRIPTION o_v_ is a postprocessor for producing double column
 formatted text when using nroff(I). o_v_ literally
 overlays successive pairs of 66-line pages.

 If the file argument is missing, the standard in-
 put is used. Thus o_v_ may be used as a filter.

FILES none

SEE ALSO nroff(I), pr(I)

DIAGNOSTICS none

BUGS Other page lengths should be permitted.

 - 1 -

PASSWD (I) 9/1/72 PASSWD (I)

NAME passwd -- set login password

SYNOPSIS p_a_s_s_w_d_ name password

DESCRIPTION The password is placed on the given login name.
 This can only be done by the user ID correspond-
 ing to the login name or by the super-user. An
 explicit null argument ("") for the password ar-
 gument will remove any password from the login
 name.

FILES /etc/passwd

SEE ALSO login(I), passwd(V), crypt(III)

DIAGNOSTICS Diagnostics are given for a non-match of the lo-
 gin name, lack of permission and for password
 file format errors.

BUGS --

 - 1 -

PR (I) 1/15/73 PR (I)

NAME pr -- print file

SYNOPSIS p_r_ [-_c_m_] [-_h_ name] [-_n] [+_n] [file918 ...]

DESCRIPTION p_r_ produces a printed listing of one or more
 files. The output is separated into pages headed
 by a date, the name of the file or a header (if
 any), and the page number. If there are no file
 arguments, p_r_ prints the standard input file, and
 is thus usable as a filter.

 Options apply to all following files but may be
 reset between files:

 -_c_ print current date
 -_m_ print date file last modified (default)

 -_n produce n-column output

 +_n begin printing with page n

 -_h_ treats the next argument as a header

 If there is a header in force, it is printed in
 place of the file name.

 Interconsole messages via w_r_i_t_e_(I) are forbidden
 during a p_r_.

FILES /dev/tty? to suspend messages.

SEE ALSO cat(I), cp(I)

DIAGNOSTICS none (files not found are ignored)

BUGS In multi-column output, non-printing characters
 other than new-line cause misalignment.

 - 1 -

PROOF (I) 1/15/73 PROOF (I)

NAME proof -- compare two text files

SYNOPSIS p_r_o_o_f_ oldfile newfile

DESCRIPTION p_r_o_o_f_ lists those lines of _n_e_w_f_i_l_e that differ
 from corresponding lines in _o_l_d_f_i_l_e_. The line
 number in _n_e_w_f_i_l_e is given. When changes, inser-
 tions or deletions have been made the program at-
 tempts to resynchronize the text in the two files
 by finding a sequence of lines in both files that
 again agree.

FILES --

SEE ALSO cmp(I)

DIAGNOSTICS yes, but they are undecipherable, e.g. "?1".

BUGS p_r_o_o_f_ is still evolving. Any bugs discovered or
 suggestions should be brought to ENP.

 - 1 -

RELOC (I) 2/7/73 RELOC (I)

NAME reloc -- relocate object files

SYNOPSIS r_e_l_o_c_ file [-_]octal [-_]

DESCRIPTION r_e_l_o_c_ modifies the named object program file so
 that it will operate correctly at a different
 core origin than the one for which it was assem-
 bled or loaded.

 The new core origin is the old origin increased
 by the given o_c_t_a_l_ number (or decreased if the
 number has a "-" sign).

 If the object file was generated by the link-edi-
 tor l_d_, the "-r" l_d_ option must have been given
 to preserve the relocation information in the
 file.

 If the optional last argument is given, then any
 "setd" instruction at the start of the file will
 be replaced by a no-op.

 The purpose of this command is to simplify the
 preparation of object programs for systems which
 have no relocation hardware. It is hard to imag-
 ine a situation in which it would be useful to
 attempt directly to execute a program treated by
 r_e_l_o_c_.

FILES --

SEE ALSO as(I), ld(I), a.out(V)

DIAGNOSTICS As appropriate

BUGS --

 - 1 -

REW (I) 1/15/73 REW (I)

NAME rew -- rewind tape

SYNOPSIS r_e_w_ [[m_]digit]

DESCRIPTION r_e_w_ rewinds DECtape or magtape drives. The digit
 is the logical tape number, and should range from
 0 to 7. If the digit is preceded by ’m’, r_e_w_ ap-
 plies to magtape rather than DECtape. A missing
 digit indicates drive 0.

FILES /dev/tap?
 /dev/mt?

SEE ALSO --

DIAGNOSTICS "?" if there is no tape mounted on the indicated
 drive or if the file cannot be opened.

BUGS --

 - 1 -

RM (I) 1/20/73 RM (I)

NAME rm -- remove (unlink) files

SYNOPSIS r_m_ [-_f_] [-_r_] name1 ...

DESCRIPTION r_m_ removes the entries for one or more files from
 a directory. If an entry was the last link to
 the file, the file is destroyed. Removal of a
 file requires write permission in its directory,
 but neither read nor write permission on the file
 itself.

 If there is no write permission to a file desig-
 nated to be removed, r_m_ will print the file name,
 its mode and then read a line from the standard
 input. If the line begins with ’y’, the file is
 removed, otherwise it is not. The optional argu-
 ment -_f_ prevents the above interaction.

 If a designated file is a directory, an error
 comment is printed unless the optional argument
 -_r_ has been used. In that case, r_m_ recursively
 deletes the entire contents of the specified di-
 rectory. To remove directories per se see
 rmdir(I).

FILES /etc/glob to implement -_r_ flag

SEE ALSO rmdir(I)

DIAGNOSTICS "name: non existent"
 "name: not removed" if cannot remove
 "name: try again" error from fork

BUGS When r_m_ removes the contents of a directory under
 the -_r_ flag, full pathnames are not printed in
 diagnostics.

 - 1 -

RMDIR (I) 3/15/72 RMDIR (I)

NAME rmdir -- remove directory

SYNOPSIS r_m_d_i_r_ dir1 ...

DESCRIPTION r_m_d_i_r_ removes (deletes) directories. The direc-
 tory must be empty (except for the standard en-
 tries "." and "..", which r_m_d_i_r_ itself removes).
 Write permission is required in the directory in
 which the directory appears.

FILES none

SEE ALSO --

DIAGNOSTICS "dir?" is printed if directory d_i_r_ cannot be
 found, is not a directory, or is not removable.

 "dir -- directory not empty" is printed if d_i_r_
 has entries other than "." or "..".

BUGS --

 - 1 -

ROFF (I) 6/12/72 ROFF (I)

NAME roff -- format text

SYNOPSIS r_o_f_f_ [+_number] [-_s_] [-_h_] file1 ...

DESCRIPTION r_o_f_f_ formats text according to control lines em-
 bedded in the text in file918, Encounter-
 ing a nonexistent file terminates printing. The
 optional argument "+_number" causes printing to
 begin at the first page with that number. The
 optional argument "-_s_" causes printing to stop
 before each page including the first to allow pa-
 per manipulation; printing is resumed upon re-
 ceipt of an interrupt signal. The optional argu-
 ment "-h" causes the output to contain horizontal
 tabs for two or more spaces that end on a tab
 stop. An interrupt signal received during print-
 ing terminates all printing. Incoming intercon-
 sole messages are turned off during printing, and
 the original message acceptance state is restored
 upon termination.

 At the present time, there is no document de-
 scribing ROFF in full. A Request Summary is at-
 tached.

FILES /etc/suftab suffix hyphenation tables
 /tmp/rtm? temporary

SEE ALSO --

DIAGNOSTICS none

BUGS -

 - 1 -

ROFF (I) 6/12/72 ROFF (I)

 REQUEST SUMMARY

_R_e_q_u_e_s_t _B_r_e_a_k _I_n_i_t_i_a_l _M_e_a_n_i_n_g

.ad yes yes Begin adjusting right margins.

.ar no arabic Arabic page numbers.

.br yes - Causes a line break - thoa filling of the
 current line is stopped.
.bl n yes - Insert contiguous block of n blank lines.
 If necessary, a new page will be started
 to accomodate the entire block.
.bp +n yes n=1 Begin new page and number it n. If n is
 not given, normal sequencing occurs.
.cc c no c=. Control character becomes ‘c’.
.ce n yes - Center the next n input lines, without
 filling.
.de xx no - Define macro named "xx" (definition ends
 with a line beginning with "..").
.ds yes no Double space; same as ".ls 2".
.ef t no t=’’’’ Even foot title becomes t.
.eh t no t=’’’’ Even head title becomes t.
.fi yes yes Begin filling output lines.
.fo no t=’’’’ All foot titles are t.
.hc c no none Hyphenation character set to ‘c’.
.he t no t=’’’’ All head titles are t.
.hx no - Title lines are suppressed.
.hy n no n=1 Hyphenation is done, if n=1; and is not
 done, if n=0.
.ig no - Ignore input lines until and including a
 line beginning with "..".
.in +n yes - Indent n spaces from left margin.
.ix +n no - Same as ".in" but without break.
.li n no - Literal, treat next n lines as text.
.ll +n no n=65 Line length including indent is n charac-
 ters.
.ls +n yes n=1 Line spacing set to n lines per output
 line.
.m1 n no n=2 n blank lines are put between the top of
 a new page and the head title.
.m2 n no n=2 n blanks lines put between head title and
 beginning of text on page.
.m3 n no n=1 n blank lines put between the end of text
 and the foot title.
.m4 n no n=3 n blank lines put between the foot title
 and the bottom of page.
.na yes no Stop adjusting the right margin.
.ne n no - Begin new page, if n output lines cannot
 fit on present page.
.nn +n no - The next n output lines are not numbered.
.n1 no no Output lines are numbered sequentially
 beginning with 1 on each new page. Head
 and foot titles are not numbered.
.n2 no no Output lines are numbered sequentially

 - 2 -

ROFF (I) 6/12/72 ROFF (I)

 beginning with 1 on the next output line.
.ni +n no n=0 Line numbers are indented n.
.nf yes no Stop filling output lines.
.nx filename - Change to input file "filename".
.of t no t=’’’’ Odd foot title becomes t.
.oh t no t=’’’’ Odd head title becomes t.
.pa +n yes n=1 Same as ".bp".
.pl +n no n=66 Total paper length taken to be n lines.
.po +n no n=0 Page offset. All lines are preceded by N
 spaces.
.ro no arabic Roman page numbers.
.sk n no - n pages with head and foot titles but
 otherwise blank will be output beginning
 with the next page containing text.
.sp n yes - Insert block of n blank lines. If the
 bottom of a page is reached, remaining
 lines are n_o_t_ put on next page.
.ss yes yes Single space output lines, equivalent to
 ".ls 1".
.ta N M ... - Pseudotab settings. Initial tab settings
 are columns 9,17,25,...
.tc c no c=" " Tab replacement character becomes "c".
.ti +n yes - Temporarily indent next output line n
 spaces.
.tr abcd.. no - Translate a into b, c into d, etc.
.ul n no - Underline the letters and numbers on the
 next n input lines.

 - 3 -

SH (I) 1/15/73 SH (I)

NAME sh -- shell (command interpreter)

SYNOPSIS s_h_ [name [arg1 ... [arg9]]]

DESCRIPTION
 s_h_ is the standard command interpreter. It is the pro-
 gram which reads and arranges the execution of the com-
 mand lines typed by most users. It may itself be called
 as a command to interpret files of commands. Before dis-
 cussing the arguments to the shell used as a command, the
 structure of command lines themselves will be given.

 _C_o_m_m_a_n_d _l_i_n_e_s

 Command lines are sequences of commands separated by com-
 mand delimiters. Each command is a sequence of non-blank
 command arguments separated by blanks. The first argu-
 ment specifies the name of a command to be executed. Ex-
 cept for certain types of special arguments discussed be-
 low, the arguments other than the command name are passed
 without interpretation to the invoked command.

 If the first argument is the name of an executable file,
 it is invoked; otherwise the string "/bin/" is prepended
 to the argument. (In this way most standard commands,
 which reside in "/bin", are found.) If no such command
 is found, the string "/usr" is further prepended (to give
 "/usr/bin/command") and another attempt is made to exe-
 cute the resulting file. (Certain "overflow" commands
 live in "/usr/bin".) If the "/usr/bin" file exists, but
 is not executable, it is used by the shell as a command
 file. That is to say it is executed as though it were
 typed from the console. If all attempts fail, a diagnos-
 tic is printed.

 The remaining non-special arguments are simply passed to
 the command without further interpretation by the shell.

 _C_o_m_m_a_n_d _d_e_l_i_m_i_t_e_r_s

 There are three command delimiters: the new-line, ";",
 and "&". The semicolon ";" specifies sequential execu-
 tion of the commands so separated; that is,

 coma; comb

 causes the execution first of command c_o_m_a_, then of c_o_m_b_.
 The ampersand "&" causes simultaneous execution:

 coma & comb

 causes c_o_m_a_ to be called, followed immediately by c_o_m_b_
 without waiting for c_o_m_a_ to finish. Thus c_o_m_a_ and c_o_m_b_
 execute simultaneously. As a special case,

 - 1 -

SH (I) 1/15/73 SH (I)

 coma &

 causes c_o_m_a_ to be executed and the shell immediately to
 request another command without waiting for c_o_m_a_.

 _T_e_r_m_i_n_a_t_i_o_n _R_e_p_o_r_t_i_n_g

 If a command (not followed by "&") terminates abnormally,
 a message is printed. (All terminations other than exit
 and interrupt are considered abnormal.) The following is
 a list of the abnormal termination messages:

 Bus error Trace/BPT trap Illegal
 instruction IOT trap Power fail trap
 EMT trap Bad system call Quit
 PIR trap Floating exception Memo-
 ry violation Killed User I/O Er-
 ror

 If a core image is produced, " -- Core dumped" is append-
 ed to the appropriate message.

 _R_e_d_i_r_e_c_t_i_o_n _o_f _I_/_O

 Three character sequences cause the immediately following
 string to be interpreted as a special argument to the
 shell itself, not passed to the command.

 An argument of the form "<arg" causes the file a_r_g_ to be
 used as the standard input file of the given command.

 An argument of the form ">arg" causes file "arg" to be
 used as the standard output file for the given command.
 "Arg" is created if it did not exist, and in any case is
 truncated at the outset.

 An argument of the form ">>arg" causes file "arg" to be
 used as the standard output for the given command. If
 "arg" did not exist, it is created; if it did exist, the
 command output is appended to the file.

 _P_i_p_e_s _a_n_d _F_i_l_t_e_r_s

 A p_i_p_e_ is a channel such that information can be written
 into one end of the pipe by one program, and read at the
 other end by another program. (See p_i_p_e_ (II)). A f_i_l_t_e_r_
 is a program which reads the standard input file, per-
 forms some transformation, and writes the result on the
 standard output file. By extending the syntax used for
 redirection of I/O, a command line can specify that the
 output produced by a command be passed via a pipe through
 another command which acts as a filter. For example:

 command >filter>

 - 2 -

SH (I) 1/15/73 SH (I)

 More generally, special arguments of the form

 >f1>f2>...>

 specify that output is to be passed successively through
 the filters f1, f2, ..., and end up on the standard out-
 put stream. By saying instead

 >f1>f2>...>file

 the output finally ends up in f_i_l_e_. (The last ">" could
 also have been a ">>" to specify concatenation onto the
 end of f_i_l_e_.)

 In exactly analogous manner input filtering can be speci-
 fied via one of

 <f1<f2<...< <f1<f2<...<file

 Both input and output filtering can be specified in the
 same command, though not in the same special argument.

 For example:

 ls >pr>

 produces a listing of the current directory with page
 headings, while

 ls >pr>xx

 puts the paginated listing into the file xx.

 If any of the filters needs arguments, quotes can be used
 to prevent the required blank characters from violating
 the blankless syntax of filters. For example:

 ls >"pr -h ’My directory’">

 uses quotes twice, once to protect the entire p_r_ command,
 once to protect the heading argument of p_r_. (Quotes are
 discussed fully below.)

 _G_e_n_e_r_a_t_i_o_n _o_f _a_r_g_u_m_e_n_t _l_i_s_t_s

 If any argument contains any of the characters "?", "*"
 or ’[’, it is treated specially as follows. The current
 directory is searched for files which m_a_t_c_h_ the given ar-
 gument.

 The character "*" in an argument matches any string of
 characters in a file name (including the null string).

 The character "?" matches any single character in a file

 - 3 -

SH (I) 1/15/73 SH (I)

 name.

 Square brackets "[...]" specify a class of characters
 which matches any single file-name character in the
 class. Within the brackets, each ordinary character is
 taken to be a member of the class. A pair of characters
 separated by "-" places in the class each character lexi-
 cally greater than or equal to the first and less than or
 equal to the second member of the pair.

 Other characters match only the same character in the
 file name.

 For example, "*" matches all file names; "?" matches all
 one-character file names; "[ab]*.s" matches all file
 names beginning with "a" or "b" and ending with ".s";
 "?[zi-m]" matches all two-character file names ending
 with "z" or the letters "i" through "m".

 If the argument with "*" or "?" also contains a "/", a
 slightly different procedure is used: instead of the
 current directory, the directory used is the one obtained
 by taking the argument up to the last "/" before a "*" or
 "?". The matching process matches the remainder of the
 argument after this "/" against the files in the derived
 directory. For example: "/usr/dmr/a*.s" matches all
 files in directory "/usr/dmr" which begin with "a" and
 end with ".s".

 In any event, a list of names is obtained which match the
 argument. This list is sorted into alphabetical order,
 and the resulting sequence of arguments replaces the sin-
 gle argument containing the "*", "[", or "?". The same
 process is carried out for each argument (the resulting
 lists are n_o_t_ merged) and finally the command is called
 with the resulting list of arguments.

 For example: directory /usr/dmr contains the files a1.s,
 a2.s, ..., a9.s. From any directory, the command

 as /usr/dmr/a?.s

 calls a_s_ with arguments /usr/dmr/a1.s, /usr/dmr/a2.s, ...
 /usr/dmr/a9.s in that order.

 _Q_u_o_t_i_n_g

 The character "\" causes the immediately following char-
 acter to lose any special meaning it may have to the
 shell; in this way "<", ">", and other characters mean-
 ingful to the shell may be passed as part of arguments.
 A special case of this feature allows the continuation of
 commands onto more than one line: a new-line preceded by

 - 4 -

SH (I) 1/15/73 SH (I)

 "\" is translated into a blank.

 Sequences of characters enclosed in double (") or single
 (’) quotes are also taken literally.

 _A_r_g_u_m_e_n_t _p_a_s_s_i_n_g

 When the shell is invoked as a command, it has additional
 string processing capabilities. Recall that the form in
 which the shell is invoked is

 sh [name [arg1 ... [arg9]]]

 The n_a_m_e_ is the name of a file which will be read and in-
 terpreted. If not given, this subinstance of the shell
 will continue to read the standard input file.

 In command lines in the file (not in command input),
 character sequences of the form "$n", where n_ is a digit
 0, ..., 9, are replaced by the n_th argument to the invo-
 cation of the shell (argn). "$0" is replaced by n_a_m_e_.

 _E_n_d _o_f _f_i_l_e

 An end-of-file in the shell’s input causes it to exit. A
 side effect of this fact means that the way to log out
 from UNIX is to type an end of file.

 _S_p_e_c_i_a_l _c_o_m_m_a_n_d_s

 Two commands are treated specially by the shell.

 "Chdir" is done without spawning a new process by execut-
 ing the s_y_s_ c_h_d_i_r_ primitive.

 "Login" is done by executing /bin/login without creating
 a new process.

 These peculiarities are inexorably imposed upon the shell
 by the basic structure of the UNIX process control sys-
 tem. It is a rewarding exercise to work out why.

 _C_o_m_m_a_n_d _f_i_l_e _e_r_r_o_r_s_; _i_n_t_e_r_r_u_p_t_s

 Any shell-detected error, or an interrupt signal, during
 the execution of a command file causes the shell to cease
 execution of that file.

FILES /etc/glob, which interprets "*", "?", and "[".

SEE ALSO "The UNIX Time-sharing System", which gives the
 theory of operation of the shell.

DIAGNOSTICS

 - 5 -

SH (I) 1/15/73 SH (I)

 "Input not found", when a command file is specified which
 cannot be read;
 "Arg count", if the number of arguments to the chdir
 pseudo-command is not exactly 1, or if "*", "?", or "["
 is used inappropriately;
 "Bad directory", if the directory given in "chdir" cannot
 be switched to;
 "Try again", if no new process can be created to execute
 the specified command;
 ""’ imbalance", if single or double quotes are not
 matched;
 "Input file", if an argument after "<" cannot be read;
 "Output file", if an argument after ">" or ">>" cannot be
 written (or created);
 "Command not found", if the specified command cannot be
 executed.
 "No match", if no arguments are generated for a command
 which contains "*", "?", or "[".
 Termination messages described above.

BUGS If any argument contains a quoted "*", "?", or
 "[", then all instances of these characters must
 be quoted. This is because s_h_ calls the g_l_o_b_
 routine whenever an unquoted "*", "?", or "[" is
 noticed; the fact that other instances of these
 characters occurred quoted is not noticed by
 g_l_o_b_.

 When output is redirected, particularly through a
 filter, diagnostics tend to be sent down the pipe
 and are sometimes lost altogether.

 - 6 -

SIZE (I) 9/2/72 SIZE (I)

NAME size -- size of an object file

SYNOPSIS s_i_z_e_ [object ...]

DESCRIPTION The size, in bytes, of the object files are
 printed. If no file is given, a_._o_u_t_ is default.
 The size is printed in octal for the text, data,
 and bss portions of each file. The sum of these
 is also printed in octal and decimal.

FILES a.out default

SEE ALSO --

DIAGNOSTICS "object not found" if the input cannot be read.
 "bad format: object" if the input file does not
 have a valid object header.

BUGS --

 - 1 -

SNO (I) 2/9/73 SNO (I)

NAME sno -- SNOBOL interpreter

SYNOPSIS s_n_o_ [file]

DESCRIPTION s_n_o_ is a SNOBOL III (with slight differences)
 compiler and interpreter. s_n_o_ obtains input from
 the concatenation of f_i_l_e_ and the standard input.
 All input through a statement containing the la-
 bel ’end’ is considered program and is compiled.
 The rest is available to ’syspit’.

 The following is a list of differences between
 s_n_o_ and SNOBOL III:

 There are no unanchored searches. To get the
 same effect:

 a ** b unanchored search for b
 a *x* b = x c unanchored assignment

 No back referencing

 x = "abc"
 a *x* x unanchored search for "abc"

 Different function declaration. The function
 declaration is done at compile time by the use
 of the label ’define’. Thus there is no abil-
 ity to define functions at run time and the
 use of the name ’define’ is preempted. There
 is also no provision for ’automatic’ variables
 other than the parameters.

 define f()
 or
 define f(a,b,c)

 All labels except ’define’ (even ’end’) must
 have a non-empty statement.

 If ’start’ is a label in the program, program
 execution will start there. If not, execution
 begins with the first executable statement.
 (’define’ is not an executable statement)

 There are no builtin functions

 Variable length patterns at the end of a pat-
 tern match are not treated specially. They
 still match the shortest rather than longest
 text.

 Parentheses for arithmetic are not needed.
 Normal (eg FORTRAN) precedence applies. Be-

 - 1 -

SNO (I) 2/9/73 SNO (I)

 cause of this, the arithmetic operators ’/’
 and ’*’ must be set off by space.

 The right side of assignments must be non-emp-
 ty.

 Either ’ or " may be used for literal quotes.

 The pseudo-variable ’sysppt’ is not available.

FILES --

SEE ALSO SNOBOL III manual. (J_A_C_M_; Vol. 11 No. 1; Jan
 1964; pp 21)

DIAGNOSTICS As appropriate

BUGS Runtime diagnostics give the last program line
 number rather than the executing statement line
 number.

 - 2 -

SORT (I) 9/2/72 SORT (I)

NAME sort -- sort a file

SYNOPSIS s_o_r_t_ [-_] [input [output]]

DESCRIPTION s_o_r_t_ will sort the input file and write the sort-
 ed file on the output file. If the output file
 is not given, the input file is rewritten. If
 the input file is missing, sort uses the standard
 input as input and the standard output for out-
 put. Thus s_o_r_t_ may be used as a filter.

 The sort is line-by-line in increasing ASCII col-
 lating sequence, except that upper-case letters
 are considered the same as the lower-case let-
 ters.

 The optional argument -_ will cause a reverse
 sort.

 s_o_r_t_ is implemented in such a way that

 sort /dev/mt0

 works correctly provided the tape is not too big.

FILES /tmp/stm?

SEE ALSO --

DIAGNOSTICS --

BUGS The largest file that can be sorted is about 128K
 bytes.

 - 1 -

SPEAK (I) 2/1/73 SPEAK (I)

NAME speak -- word to voice translator

SYNOPSIS s_p_e_a_k_ [-_] [vocabulary]

DESCRIPTION s_p_e_a_k_ turns a stream of ascii words into utter-
 ances and outputs them to a voice synthesizer.
 It has facilities for maintaining a vocabulary.
 It receives, from the standard input

 - working lines - text of words separated by
 blanks
 - phonetic lines - strings of phonemes for one
 word preceded and separated by commas. The
 phonetic code is given in v_s_p_(VII).
 - empty lines
 - command lines - beginning with !_. The follow-
 ing forms are recognized:

 !_r_ file replace coded vocabulary from file
 !_w_ file write coded vocabulary on file
 !_p_ print phonetics for working word
 !_l_ list vocabulary on standard output
 with phonetics
 !_c_ word copy phonetics from working word to
 specified word
 !_s_ file (save) append working word and phonet-
 ics to file in style of !_l_

 Each working line replaces its predecessor. Its
 first word is the "working word". Each phonetic
 line replaces the phonetics stored for the work-
 ing word. Each working line, phonetic line or
 empty line causes the working line to be uttered.
 The process terminates at the end of input.

 Unknown words are spelled as strings of one-let-
 ter words. Unknown one-letter words burp.

 A phonetic line of comma only will delete the en-
 try for the working word.

 s_p_e_a_k_ is initialized with a coded vocabulary
 stored in file _/_e_t_c_/_s_p_e_a_k_._m_. The vocabulary op-
 tion substitutes a different file for s_p_e_a_k_._m_.

 The -_ option suppresses all utterances.

FILES /etc/speak.m

SEE ALSO vsp(VII), speakm(V), vt(IV)

BUGS Vocabulary overflow is unchecked. Excessively
 long words cause dumps. Space is not reclaimed
 from deleted entries.

 - 1 -

SPLIT (I) 1/15/73 SPLIT (I)

NAME split -- split a file into pieces

SYNOPSIS split [[file1] file2]

DESCRIPTION Split reads file1 and writes it in 1000-line
 pieces, as many as are necessary, onto a set of
 output files. The name of the first output file
 is file2 with an "a" appended, and so on through
 the alphabet and beyond. If no output name is
 given, "x" is default.

 If no input file is given, or the first argument
 is "-", then the standard input file is used.

FILES -

SEE ALSO --

DIAGNOSTICS yes

BUGS Watch out for 8-character file names.

 - 1 -

STAT (I) 3/15/72 STAT (I)

NAME stat -- get file status

SYNOPSIS s_t_a_t_ name1 ...

DESCRIPTION s_t_a_t_ gives several kinds of information about one
 or more files:

 i-number
 access mode
 number of links
 owner
 size in bytes
 date and time of last modification
 name (useful when several files are named)

 All information is self-explanatory except the
 mode. The mode is a six-character string whose
 characters mean the following:

 1 s: file is small (smaller than 4096 bytes)
 l: file is large

 2 d: file is a directory
 x: file is executable
 u: set user ID on execution
 -: none of the above

 3 r: owner can read
 -: owner cannot read

 4 w: owner can write
 -: owner cannot write

 5 r: non-owner can read
 -: non-owner cannot read

 6 w: non-owner can write
 -: non-owner cannot write

 The owner is almost always given in symbolic
 form; however if he cannot be found in
 "/etc/passwd" a number is given.

 If the number of arguments to s_t_a_t_ is not exactly
 1 a header is generated identifying the fields of
 the status information.

FILES /etc/passwd

SEE ALSO istat(I), ls(I) (-l option)

DIAGNOSTICS "name?" for any error.

 - 1 -

STRIP (I) 3/15/72 STRIP (I)

NAME strip -- remove symbols and relocation bits

SYNOPSIS s_t_r_i_p_ name1 ...

DESCRIPTION s_t_r_i_p_ removes the symbol table and relocation
 bits ordinarily attached to the output of the as-
 sembler and loader. This is useful to save space
 after a program has been debugged.

 The effect of s_t_r_i_p_ is the same as use of the -_s_
 option of l_d_.

FILES /tmp/stm? temporary file

SEE ALSO ld(I), as(I)

DIAGNOSTICS Diagnostics are given for: non-existent argument;
 inability to create temporary file;
 improper format (not an object file);
 inability to re-read temporary file.

BUGS --

 - 1 -

STTY (I) 6/12/72 STTY (I)

NAME stty -- set teletype options

SYNOPSIS s_t_t_y_ option918 ...

DESCRIPTION S_t_t_y_ will set certain I/O options on the current
 output teletype. The option strings are selected
 from the following set:

 e_v_e_n_ allow even parity.
 -_e_v_e_n_ disallow even parity.
 o_d_d_ allow odd parity
 -_o_d_d_ disallow odd parity
 r_a_w_ raw mode input
 (no erase/kill/interrupt/quit/EOT)
 -_r_a_w_ negate raw mode
 -_n_l_ allow cr for lf (and echo lf cr)
 n_l_ allow nl only
 e_c_h_o_ echo back every character typed.
 -_e_c_h_o_ do not echo characters.
 l_c_a_s_e_ map upper case to lower case
 -_l_c_a_s_e_ do not map case
 -_t_a_b_s_ replace tabs by spaces
 t_a_b_s_ preserve tabs
 d_e_l_a_y_ calculate cr and tab delays.
 -_d_e_l_a_y_ no cr/tab delays
 e_b_c_d_i_c_ ebcdic ball conversion (2741 only)
 c_o_r_r_e_s_ correspondence ball conversion (2741 only)

FILES standard output.

SEE ALSO stty(II)

DIAGNOSTICS "Bad options"

BUGS --

 - 1 -

SUM (I) 3/15/72 SUM (I)

NAME sum -- sum file

SYNOPSIS s_u_m_ name1 ...

DESCRIPTION s_u_m_ sums the contents of the bytes (mod 2^16) of
 one or more files and prints the answer in octal.
 A separate sum is printed for each file speci-
 fied, along with the number of whole or partial
 512-byte blocks read.

 In practice, s_u_m_ is often used to verify that all
 of a special file can be read without error.

FILES none

SEE ALSO --

DIAGNOSTICS "oprd" if the file cannot be opened; "?" if an
 error is discovered during the read.

BUGS none

 - 1 -

TAP (I) 3/15/72 TAP (I)

NAME tap -- manipulate DECtape

SYNOPSIS t_a_p_ [key] [name ...]

DESCRIPTION t_a_p_ saves and restores selected portions of the
 file system hierarchy on DECtape. Its actions
 are controlled by the k_e_y_ argument. The key is a
 string of characters containing at most one func-
 tion letter and possibly one or more function
 modifiers. Other arguments to the command are
 file or directory names specifying which files
 are to be dumped, restored, or tabled.

 The function portion of the key is specified by
 one of the following letters:

 r The indicated files and directories, to-
 gether with all subdirectories, are dumped
 onto the tape. If files with the same
 names already exist, they are replaced
 (hence the "r"). "Same" is determined by
 string comparison, so "./abc" can never be
 the same as "/usr/dmr/abc" even if
 "/usr/dmr" is the current directory. If no
 file argument is given, "." is the default.

 u updates the tape. u_ is the same as r_, but
 a file is replaced only if its modification
 date is later than the date stored on the
 tape; that is to say, if it has changed
 since it was dumped. u_ is the default com-
 mand if none is given.

 d deletes the named files and directories
 from the tape. At least one file argument
 must be given.

 x extracts the named files from the tape to
 the file system. The owner, mode, and
 date-modified are restored to what they
 were when the file was dumped. If no file
 argument is given, the entire contents of
 the tape are extracted.

 t lists the names of all files stored on the
 tape which are the same as or are hierar-
 chically below the file arguments. If no
 file argument is given, the entire contents
 of the tape are tabled.

 l is the same as t_ except that an expanded
 listing is produced giving all the avail-
 able information about the listed files.

 - 1 -

TAP (I) 3/15/72 TAP (I)

 The following characters may be used in addition
 to the letter which selects the function desired.

 0, ..., 7 This modifier selects the drive on
 which the tape is mounted. "0" is the de-
 fault.

 v Normally t_a_p_ does its work silently. The v_
 (verbose) option causes it to type the name
 of each file it treats preceded by a letter
 to indicate what is happening.

 r file is being replaced
 a file is being added (not there before)
 x file is being extracted
 d file is being deleted

 The v_ option can be used with r_, u_, d_, and
 x_ only.

 c means a fresh dump is being created; the
 tape directory will be zeroed before begin-
 ning. Usable only with r_ and u_.

 f causes new entries copied on tape to be
 ’fake’ in that no data is present for these
 entries. Such fake entries cannot be ex-
 tracted. Usable only with r_ and u_.

 w causes t_a_p_ to pause before treating each
 file, type the indicative letter and the
 file name (as with v_) and await the user’s
 response. Response "y" means "yes", so the
 file is treated. Null response means "no",
 and the file does not take part in whatever
 is being done. Response "x" means "exit";
 the t_a_p_ command terminates immediately. In
 the x_ function, files previously asked
 about have been extracted already. With r_,
 u_, and d_ no change has been made to the
 tape.

 m make (create) directories during an x_ if
 necessary.

FILES /dev/tap?

SEE ALSO mt(I)

DIAGNOSTICS Tape open error
 Tape read error
 Tape write error
 Directory checksum
 Directory overflow

 - 2 -

TAP (I) 3/15/72 TAP (I)

 Tape overflow
 Phase error (a file has changed after it was se-
 lected for dumping but before it was dumped)

BUGS Asks about "fake" entries on "xw", when it should
 ignore them. If a fake entry is extracted, and
 the file already exists on disk, the extraction
 does not take place (as is correct), but the mode
 and user ID of the file are set to 0.

 - 3 -

TIME (I) 10/26/72 TIME (I)

NAME time -- time a command

SYNOPSIS t_i_m_e_ command

DESCRIPTION The given command is timed; after it is complete,
 t_i_m_e_ prints the time spent in the system, waiting
 for disk, and in execution of the command.

 The disk I/O time can be variable depending on
 other activity in the system.

FILES --

SEE ALSO tm (VIII)

DIAGNOSTICS "?"
 "command terminated abnormally"
 "Command not found."

 - 1 -

TMG (I) 10/21/72 TMG (I)

NAME tmg -- compiler compiler

SYNOPSIS t_m_g_ name

DESCRIPTION t_m_g_ produces a translator for the language whose
 parsing and translation rules are described in
 file name._t_. The new translator appears in a.out
 and may be used thus:

 a_._o_u_t_ input [output]

 Except in rare cases input must be a randomly ad-
 dressable file. If no output file is specified,
 the standard output file is assumed.

FILES /sys/tmg/tmgl.o -- the compiler-compiler
 /sys/tmg[abc] -- libraries
 alloc.d -- table storage

SEE ALSO A Manual for the Tmg Compiler-writing Language,
 MM-72-1271-8.

DIAGNOSTICS Syntactic errors result in "???" followed by the
 offending line.
 Situations such as space overflow with which the
 Tmg processor or a Tmg-produced processor can not
 cope result in a descriptive comment and a dump.

BUGS 9.2 footnote 1 is not enforced, causing trouble.
 Restrictions (7.) against mixing bundling primi-
 tives should be lifted.
 Certain hidden reserved words exist: gpar,
 classtab, trans.
 Octal digits include 8=10 and 9=11.

 - 1 -

TSS (I) 3/15/72 TSS (I)

NAME tss -- interface to Honeywell TSS

SYNOPSIS t_s_s_

DESCRIPTION t_s_s_ will call the Honeywell 6070 on the 201 data
 phone. It will then go into direct access with
 TSS. Output generated by TSS is typed on the
 standard output and input requested by TSS is
 read from the standard input with UNIX typing
 conventions.

 An interrupt signal (ASCII DEL) is transmitted as
 a "break" to TSS.

 Input lines beginning with !_ are interpreted as
 UNIX commands. Input lines beginning with _̃ are
 interpreted as commands to the interface routine.

 ˜<file insert input from named UNIX file

 ˜>file deliver tss output to named UNIX file

 ˜p pop the output file

 ˜q disconnect from tss (quit)

 ˜r file receive from HIS routine CSR/DACCOPY

 ˜s file send file to HIS routine CSR/DACCOPY

 Ascii files may be most efficiently transmitted
 using the HIS routine CSR/DACCOPY in this fash-
 ion. Underlined text comes from TSS. AFTname is
 the 6070 file to be dealt with.

 S_Y_S_T_E_M_?_ CSR/DACCOPY (s) AFTname
 S_e_n_d__E_n_c_o_d_e_d__F_i_l_e_ ˜s file

 S_Y_S_T_E_M_? CSR/DACCOPY (r) AFTname
 R_e_c_e_i_v_e__E_n_c_o_d_e_d__F_i_l_e_ ˜r file

FILES /dev/dn0, /dev/dp0

SEE ALSO --

DIAGNOSTICS DONE when communication is broken.

BUGS When diagnostic problems occur, t_s_s_ exits rather
 abruptly.

 - 1 -

TTY (I) 3/15/72 TTY (I)

NAME tty -- get tty name

SYNOPSIS t_t_y_

DESCRIPTION t_t_y_ gives the name of the user’s typewriter in
 the form "ttyn" for n_ a digit. The actual path
 name is then "/dev/ttyn".

FILES --

SEE ALSO --

DIAGNOSTICS "not a tty" if the standard input file is not a
 typewriter.

BUGS --

 - 1 -

TYPE (I) 6/12/72 TYPE (I)

NAME type -- type on single sheet paper

SYNOPSIS t_y_p_e_ file918 ...

DESCRIPTION t_y_p_e_ copies its input files to the standard out-
 put. Before each new page (66 lines) and before
 each new file, type stops and reads the standard
 input for a new line character before continuing.
 This allows time for insertion of single sheet
 paper.

FILES --

SEE ALSO --

DIAGNOSTICS --

BUGS --

 - 1 -

TYPO (I) 1/15/73 TYPO (I)

NAME typo -- find possible typo’s

SYNOPSIS t_y_p_o_ [-_] file1 ...

DESCRIPTION typo hunts through a document for unusual words,
 typographic errors, and hapax legomena and prints
 them on the standard output.

 All words used in the document are printed out in
 decreasing order of peculiarity along with an in-
 dex of peculiarity. An index of 10 or more is
 considered peculiar. Printing of certain very
 common English words is suppressed.

 The statistics for judging words are taken from
 the document itself; with some help from known
 statistics of English. The "-" option suppresses
 the help from English and should be used if the
 document is written in, for example, Urdu.

 Roff and Nroff control lines are ignored. Upper
 case is mapped into lower case. Quote marks,
 vertical bars, hyphens, and ampersands are
 stripped from within words. Words hyphenated
 across lines are put back together.

FILES /tmp/ttmp??, /etc/salt, /etc/w2006

SEE ALSO --

DIAGNOSTICS yes, lots

BUGS Because of the mapping into lower case and the
 stripping of special characters, words may be
 hard to locate in the original text.

 - 1 -

UN (I) 3/15/72 UN (I)

NAME un -- undefined symbols

SYNOPSIS u_n_ [name]

DESCRIPTION u_n_ prints a list of undefined symbols from an as-
 sembly or loader run. If the file argument is
 not specified, a_._o_u_t_ is the default. Names are
 listed alphabetically except that non-global sym-
 bols come first. Undefined global symbols (unre-
 solved external references) have their first
 character underlined.

FILES a.out

SEE ALSO as(I), ld(I)

DIAGNOSTICS "?" if the file cannot be found.

BUGS --

 - 1 -

UNIQ (I) 12/1/72 UNIQ (I)

NAME uniq -- report repeated lines in a file

SYNOPSIS u_n_i_q_ [-_u_d_] [input [output]]

DESCRIPTION u_n_i_q_ reads the input file comparing adjacent
 lines. In the normal case, the second and suc-
 ceeding copies of repeated lines are removed; the
 remainder is written on the output file. Note
 that repeated lines must be adjacent in order to
 be found. (See sort(I)) If the -_u_ flag is used,
 just the lines that are not repeated in the orig-
 inal file are output. The -_d_ option specifies
 that one copy of just the repeated lines is to be
 written. Note that the normal mode output is the
 union of the -_u_ and -_d_ mode outputs.

 The following example will print one copy of all
 lines in the file a_ that do not occur in b_:

 sort a x uniq x a1 sort b
 x uniq x b1 cat a1 b1 >x
 sort x uniq -u x >>a1
 sort a1 uniq -d a1

FILES --

SEE ALSO sort(I)

DIAGNOSTICS "cannot open input", "cannot create output"

BUGS --

 - 1 -

VS (I) 2/13/73 VS(I)

NAME vs -- phoneme list to voice synthesizer

SYNOPSIS v_s_

DESCRIPTION v_s_ accepts phoneme descriptor lists and trans-
 lates them into byte strings suitable for the
 Federal Screw Works Voice Synthesizer. Phoneme
 descritors should be separated by commas and have
 the general form "%NIxx" where "xx" is a one or
 two character phoneme name, "I" is an optional
 inflection parameter, and "%N" is an optional
 count of the number of times the phoneme is to be
 repeated (maximum 9). "I" can have the values 0,
 1, 2, 3 representing decreasing strength (default
 is 2). A description of the phonemes and their
 names can be found in the file v_s_p_(VII). For ex-
 ample,

 a0,o1,t,r,1ai,1ay,d,j,ih,u1,%2s

 will generate the word "outrageous". The output
 is buffered; a newline will cause the buffered
 output to be sent to the Voice Synthesizer.

FILES -

SEE ALSO vsp(VII), speak(I)

DIAGONOSTICS -

BUGS -

 - 1 -

WC (I) 3/15/72 WC (I)

NAME wc -- get (English) word count

SYNOPSIS w_c_ name918 ...

DESCRIPTION w_c_ provides a count of the words, text lines, and
 control lines for each argument file.

 A text line is a sequence of characters not be-
 ginning with ".", "!" or "’" and ended by a new-
 line. A control line is a line beginning with
 ".", "!" or "’". A word is a sequence of charac-
 ters bounded by the beginning of a line, by the
 end of a line, or by a blank or a tab.

 When there is more than one input file, a grand
 total is also printed.

FILES --

SEE ALSO roff(I)

DIAGNOSTICS none; arguments not found are ignored.

BUGS --

 - 1 -

WHO (I) 3/15/72 WHO (I)

NAME who -- who is on the system

SYNOPSIS w_h_o_ [who-file]

DESCRIPTION w_h_o_, without an argument, lists the name, type-
 writer channel, and login time for each current
 UNIX user.

 Without an argument, w_h_o_ examines the /_t_m_p_/_u_t_m_p_
 file to obtain its information. If a file is
 given, that file is examined. Typically the giv-
 en file will be /_t_m_p_/_w_t_m_p_, which contains a
 record of all the logins since it was created.
 Then w_h_o_ will list logins, logouts, and crashes
 since the creation of the wtmp file.

 Each login is listed with user name, last charac-
 ter of input device name (with /_d_e_v_/_t_t_y_ sup-
 pressed), date and time. Certain logouts produce
 a similar line without a user name. Reboots pro-
 duce a line with "x" in the place of the device
 name, and a fossil time indicative of when the
 system went down.

FILES /tmp/utmp

SEE ALSO login(I), init(VII)

DIAGNOSTICS "?" if a named file cannot be read.

BUGS --

 - 1 -

WRITE (I) 3/15/72 WRITE (I)

NAME write -- write to another user

SYNOPSIS w_r_i_t_e_ user

DESCRIPTION w_r_i_t_e_ copies lines from your typewriter to that
 of another user. When first called, w_r_i_t_e_ sends
 the message

 message from yourname...

 The recipient of the message should write back at
 this point. Communication continues until an end
 of file is read from the typewriter or an inter-
 rupt is sent. At that point w_r_i_t_e_ writes "EOT"
 on the other terminal.

 Permission to write may be denied or granted by
 use of the m_e_s_g_ command. At the outset writing
 is allowed. Certain commands, in particular r_o_f_f_
 and p_r_, disallow messages in order to prevent
 messy output.

 If the character "!" is found at the beginning of
 a line, w_r_i_t_e_ calls the mini-shell m_s_h_ to execute
 the rest of the line as a command.

 The following protocol is suggested for using
 w_r_i_t_e_: When you first write to another user, wait
 for him to write back before starting to send.
 Each party should end each message with a dis-
 tinctive signal ("(o)" for "over" is convention-
 al) that the other may reply. "(oo)" (for "over
 and out") is suggested when conversation is about
 to be terminated.

FILES /tmp/utmp to find user
 /etc/msh to execute !

SEE ALSO mesg(I), msh(VII)

DIAGNOSTICS "user not logged in"; "permission denied".

BUGS w_r_i_t_e_ should check the mode of the other user’s
 typewriter and refuse to proceed unless non-user
 write permission is given. Currently it is pos-
 sible to write to another person with the same
 user-ID even though he has forbidden messages.

 w_r_i_t_e_ should also allow specification of the
 typewriter name of a user who is logged in sever-
 al times instead of picking out the instance with
 the lowest name.

 - 1 -

BOOT (II) 7/29/72 BOOT (II)

NAME boot -- reboot UNIX

SYNOPSIS sys boot / boot = 39. not in assembler

DESCRIPTION UNIX will clean up outstanding IO, and then exe-
 cute the reboot read-only program. This call is
 restricted to the super-user. All users will be
 logged out.

SEE ALSO boot procedures (VII)

DIAGNOSTICS the c-bit is set if you are not the super-user

BUGS It often doesn’t work (for unknown reasons).
 It depends on switch settings.

 - 1 -

BREAK (II) 3/15/72 BREAK (II)

NAME break -- set program break

SYNOPSIS sys break; addr / break = 17.

DESCRIPTION b_r_e_a_k_ sets the system’s idea of the highest loca-
 tion used by the program to a_d_d_r_. Locations
 greater than a_d_d_r_ and below the stack pointer are
 not swapped and are thus liable to unexpected
 modification.

 An argument of 0 is taken to mean 16K bytes. If
 the argument is higher than the stack pointer the
 entire user core area is swapped.

 When a program begins execution via e_x_e_c_ the
 break is set at the highest location defined by
 the program and data storage areas. Ordinarily,
 therefore, only programs with growing data areas
 need to use b_r_e_a_k_.

SEE ALSO exec(II)

DIAGNOSTICS none; strange addresses cause the break to be set
 at 16K bytes.

BUGS --

 - 1 -

CEMT (II) 9/4/72 CEMT (II)

NAME cemt -- catch emt traps

SYNOPSIS sys cemt; arg / cemt = 29.

DESCRIPTION This call allows one to catch traps resulting
 from the e_m_t_ instruction. A_r_g_ is a location
 within the program; e_m_t_ traps are sent to that
 location. The normal effect of e_m_t_ traps may be
 restored by giving an a_r_g_ equal to 0.

 To return after catching the e_m_t_ trap, execute
 the r_t_i_ instruction.

SEE ALSO --

DIAGNOSTICS --

BUGS --

 - 1 -

CHDIR (II) 3/15/72 CHDIR (II)

NAME chdir -- change working directory

SYNOPSIS sys chdir; dirname / chdir = 12.

DESCRIPTION d_i_r_n_a_m_e_ is the address of the pathname of a di-
 rectory, terminated by a 0 byte. c_h_d_i_r_ causes
 this directory to become the current working di-
 rectory.

SEE ALSO chdir(I)

DIAGNOSTICS The error bit (c-bit) is set if the given name is
 not that of a directory or is not readable.

BUGS --

 - 1 -

CHMOD (II) 3/15/72 CHMOD (II)

NAME chmod -- change mode of file

SYNOPSIS sys chmod; name; mode / chmod = 15.

DESCRIPTION The file whose name is given as the null-termi-
 nated string pointed to by n_a_m_e_ has its mode
 changed to m_o_d_e_. Modes are constructed by o_r_ing
 together some combination of the following:

 01 write, non-owner
 02 read, non-owner
 04 write, owner
 10 read, owner
 20 executable
 40 set user ID on execution

 Only the owner of a file (or the super-user) may
 change the mode.

SEE ALSO chmod(I)

DIAGNOSTICS Error bit (c-bit) set if n_a_m_e_ cannot be found or
 if current user is neither the owner of the file
 nor the super-user.

BUGS --

 - 1 -

CHOWN (II) 3/15/72 CHOWN (II)

NAME chown -- change owner of file

SYNOPSIS sys chown; name; owner / chown = 16.

DESCRIPTION The file whose name is given by the null-termi-
 nated string pointed to by n_a_m_e_ has its owner
 changed to o_w_n_e_r_. Only the present owner of a
 file (or the super-user) may donate the file to
 another user. Also, one may not change the owner
 of a file with the set-user-ID bit on, otherwise
 one could create Trojan Horses.

SEE ALSO chown(I), uids(V)

DIAGNOSTICS The error bit (c-bit) is set on illegal owner
 changes.

BUGS --

 - 1 -

CLOSE (II) 3/15/72 CLOSE (II)

NAME close -- close a file

SYNOPSIS (file descriptor in r0)
 sys close / close = 6.

DESCRIPTION Given a file descriptor such as returned from an
 open or creat call, c_l_o_s_e_ closes the associated
 file. A close of all files is automatic on exit,
 but since processes are limited to 10 simultane-
 ously open files, c_l_o_s_e_ is necessary for programs
 which deal with many files.

SEE ALSO creat(II), open(II)

DIAGNOSTICS The error bit (c-bit) is set for an unknown file
 descriptor.

BUGS --

 - 1 -

CREAT (II) 3/15/72 CREAT (II)

NAME creat -- create a new file

SYNOPSIS sys creat; name; mode / creat = 8.
 (file descriptor in r0)

DESCRIPTION c_r_e_a_t_ creates a new file or prepares to rewrite
 an existing file called n_a_m_e_; n_a_m_e_ is the address
 of a null-terminated string. If the file did not
 exist, it is given mode m_o_d_e_; if it did exist,
 its mode and owner remain unchanged but it is
 truncated to 0 length.

 The file is also opened for writing, and its file
 descriptor is returned in r0.

 The m_o_d_e_ given is arbitrary; it need not allow
 writing. This feature is used by programs which
 deal with temporary files of fixed names. The
 creation is done with a mode that forbids writ-
 ing. Then if a second instance of the program
 attempts a c_r_e_a_t_, an error is returned and the
 program knows that the name is unusable for the
 moment.

SEE ALSO write(II), close(II)

DIAGNOSTICS The error bit (c-bit) may be set if: a needed di-
 rectory is not readable; the file does not exist
 and the directory in which it is to be created is
 not writable; the file does exist and is un-
 writable; the file is a directory; there are al-
 ready 10 files open.

BUGS --

 - 1 -

CSW (II) 7/29/72 CSW (II)

NAME csw -- read console switches

SYNOPSIS sys csw / csw = 38. not in assembler
 (value of csw in r0)
 (value of buttons in r1)

DESCRIPTION The setting of the console switches is returned
 in r0. The setting of the external buttons is
 returned in r1. The return is synced to a 30 CPS
 clock for graphical applications.

SEE ALSO --

DIAGNOSTICS none

BUGS Currently the buttons are unavailable.

 - 1 -

DUP (II) 1/15/73 DUP (II)

NAME dup -- duplicate an open file descriptor

SYNOPSIS (file descriptor in r0)
 sys dup / dup = 41.; not in assembler
 (file descriptor in r0)

DESCRIPTION Given a file descriptor returned from an open or
 creat call, d_u_p_ will allocate another file de-
 scriptor synonymous with the original. The new
 file descriptor is returned in r0.

 D_u_p_ is used more to manipulate the value of file
 descriptors than to genuinely duplicate a file
 descriptor. Since the algorithm to allocate file
 descriptors is known to use the lowest available
 value between 0 and 9, combinations of d_u_p_ and
 c_l_o_s_e_ can be used to manipulate file descriptors
 in a general way. This is handy for manipulating
 standard input and/or standard output.

SEE ALSO creat(II), open(II), close(II)

DIAGNOSTICS The error bit (c-bit) is set if: the given file
 descriptor is invalid; there are already 10 open
 files.

BUGS --

 - 1 -

EXEC (II) 3/15/72 EXEC (II)

NAME exec -- execute a file

SYNOPSIS sys exec; name; args / exec = 11.
 name: <...\0>
 args: arg1; arg2; ...; 0
 arg1: <...\0>

DESCRIPTION e_x_e_c_ overlays the calling process with the named
 file, then transfers to the beginning of the core
 image of the file. The first argument to e_x_e_c_ is
 a pointer to the name of the file to be executed.
 The second is the address of a list of pointers
 to arguments to be passed to the file. Conven-
 tionally, the first argument is the name of the
 file. Each pointer addresses a string terminated
 by a null byte.

 There can be no return from the file; the calling
 core image is lost.

 The program break is set from the executed file;
 see the format of a.out.

 Once the called file starts execution, the argu-
 ments are available as follows. The stack point-
 er points to a word containing the number of ar-
 guments. Just above this number is a list of
 pointers to the argument strings.

 sp-> nargs arg1 ...
 argn

 arg1: <arg1\0> ...
 argn: <argn\0>

 The arguments are placed as high as possible in
 core: just below 57000(8).

 Files remain open across e_x_e_c_ calls. However,
 the illegal instruction, e_m_t_, quit, and interrupt
 trap specifications are reset to the standard
 values. (See i_l_g_i_n_s_, c_e_m_t_, q_u_i_t_, i_n_t_r_.)

 Each user has a r_e_a_l_ user ID and an e_f_f_e_c_t_i_v_e_ us-
 er ID (The real ID identifies the person using
 the system; the effective ID determines his ac-
 cess privileges.) e_x_e_c_ changes the effective us-
 er ID to the owner of the executed file if the
 file has the "set-user-ID" mode. The real user
 ID is not affected.

SEE ALSO fork(II)

DIAGNOSTICS If the file cannot be read or if it is not exe-

 - 1 -

EXEC (II) 3/15/72 EXEC (II)

 cutable, a return from e_x_e_c_ constitutes the diag-
 nostic. The error bit (c-bit) is set.

BUGS Very high core and very low core are used by e_x_e_c_
 to construct the argument list for the new core
 image. If the original copies of the arguments
 reside in these places, problems can result.

 - 2 -

EXIT (II) 3/15/72 EXIT (II)

NAME exit -- terminate process

SYNOPSIS (status in r0)
 sys exit / exit = 1

DESCRIPTION e_x_i_t_ is the normal means of terminating a
 process. Exit closes all the process’ files and
 notifies the parent process if it is executing a
 w_a_i_t_. The low byte of r0 is available as status
 to the parent process.

 This call can never return.

SEE ALSO wait(II)

DIAGNOSTICS -

BUGS --

 - 1 -

FORK (II) 3/15/72 FORK (II)

NAME fork -- spawn new process

SYNOPSIS sys fork / fork = 2.
 (new process return)
 (old process return)

DESCRIPTION f_o_r_k_ is the only way new processes are created.
 The new process’s core image is a copy of that of
 the caller of f_o_r_k_; the only distinction is the
 return location and the fact that r0 in the old
 process contains the process ID of the new
 process. This process ID is used by w_a_i_t_.

SEE ALSO wait(II), exec(II)

DIAGNOSTICS The error bit (c-bit) is set in the old process
 if a new process could not be created because of
 lack of process space.

BUGS See wait(II) for a subtile bug in process de-
 struction.

 - 1 -

FPE (II) 9/2/72 FPE (II)

NAME fpe -- set floating exception handling

SYNOPSIS sys fpe; arg / fpe = 40. not in assembler

DESCRIPTION This call allows one to catch traps resulting
 from floating point exceptions. A_r_g_ is a loca-
 tion within the program; floating exception traps
 are sent to that location. The normal effect of
 floating exception traps may be restored by giv-
 ing an a_r_g_ equal to 0.

 To return after catching the f_p_e_ trap, execute
 the r_t_i_ instruction.

SEE ALSO --

DIAGNOSTICS --

BUGS The floating point exception (FEC) register is
 not saved per process. Examining this register
 for possible remedial action after a floating
 point exception trap is not guaranteed to work.

 - 1 -

FSTAT (II) 3/15/72 FSTAT (II)

NAME fstat -- get status of open file

SYNOPSIS (file descriptor in r0)
 sys fstat; buf / fstat = 28.

DESCRIPTION This call is identical to s_t_a_t_, except that it
 operates on open files instead of files given by
 name. It is most often used to get the status of
 the standard input and output files, whose names
 are unknown.

SEE ALSO stat(II)

DIAGNOSTICS The error bit (c-bit) is set if the file descrip-
 tor is unknown.

BUGS --

 - 1 -

GETUID (II) 3/15/72 GETUID (II)

NAME getuid -- get user identification

SYNOPSIS sys getuid / getuid = 24.
 (user ID in r0)

DESCRIPTION g_e_t_u_i_d_ returns the real user ID of the current
 process. The real user ID identifies the person
 who is logged in, in contradistinction to the ef-
 fective user ID, which determines his access per-
 mission at each moment. It is thus useful to
 programs which operate using the "set user ID"
 mode, to find out who invoked them.

SEE ALSO setuid(II)

DIAGNOSTICS --

BUGS --

 - 1 -

GTTY (II) 3/15/72 GTTY (II)

NAME gtty -- get typewriter status

SYNOPSIS (file descriptor in r0)
 sys gtty; arg / gtty = 32.
 arg: .=.+6

DESCRIPTION g_t_t_y_ stores in the three words addressed by a_r_g_
 the status of the typewriter whose file descrip-
 tor is given in r0. The format is the same as
 that passed by s_t_t_y_.

SEE ALSO stty(II)

DIAGNOSTICS Error bit (c-bit) is set if the file descriptor
 does not refer to a typewriter.

BUGS --

 - 1 -

ILGINS (II) 3/15/72 ILGINS (II)

NAME ilgins -- catch illegal instruction trap

SYNOPSIS sys ilgins; arg / ilgins = 33.

DESCRIPTION i_l_g_i_n_s_ allows a program to catch illegal instruc-
 tion traps. If a_r_g_ is zero, the normal instruc-
 tion trap handling is done: the process is termi-
 nated and a core image is produced. If a_r_g_ is a
 location within the program, control is passed to
 a_r_g_ when the trap occurs.

 This call is used to implement the floating point
 simulator, which catches and interprets 11/45
 floating point instructions.

 To return after catching the i_l_g_i_n_s_ trap, execute
 the r_t_i_ instruction.

SEE ALSO PDP-11 manual

DIAGNOSTICS --

BUGS --

 - 1 -

INTR (II) 3/15/72 INTR (II)

NAME intr -- set interrupt handling

SYNOPSIS sys intr; arg / intr = 27.

DESCRIPTION When a_r_g_ is 0, interrupts (ASCII DELETE) are ig-
 nored. When a_r_g_ is 1, interrupts cause their
 normal result, that is, force an e_x_i_t_. When a_r_g_
 is a location within the program, control is
 transferred to that location when an interrupt
 occurs.

 After an interrupt is caught, it is possible to
 resume execution by means of an r_t_i_ instruction;
 however, great care must be exercised, since all
 I/O is terminated abruptly upon an interrupt. In
 particular, reads of the typewriter tend to re-
 turn with 0 characters read, thus simulating an
 end of file.

SEE ALSO quit(II)

DIAGNOSTICS --

BUGS --

 - 1 -

KILL (II) 6/12/72 KILL (II)

NAME kill -- destroy process

SYNOPSIS (process number in r0)
 sys kill / kill = 37.; not in assembler

DESCRIPTION k_i_l_l_ destroys a process, given its process num-
 ber. The process leaves a core image.

 This call is restricted to the super-user, and is
 intended only to kill an otherwise unstoppable
 process.

SEE ALSO --

DIAGNOSTICS c-bit set if user is not the super-user, or if
 process does not exist.

BUGS Under strange circumstances, k_i_l_l_ is ineffective.

 - 1 -

LINK (II) 3/15/72 LINK (II)

NAME link -- link to a file

SYNOPSIS sys link; name1; name2 / link = 9.

DESCRIPTION A link to n_a_m_e_1 is created; the link has name
 n_a_m_e_2. Either name may be an arbitrary path
 name.

SEE ALSO link(I), unlink(II)

DIAGNOSTICS The error bit (c-bit) is set when n_a_m_e_1 cannot be
 found; when n_a_m_e_2 already exists; when the direc-
 tory of n_a_m_e_2 cannot be written; when an attempt
 is made to link to a directory by a user other
 than the super-user.

BUGS --

 - 1 -

MAKDIR (II) 3/15/72 MAKDIR (II)

NAME makdir -- make a directory

SYNOPSIS sys makdir; name; mode / makdir = 14.

DESCRIPTION m_a_k_d_i_r_ creates an empty directory whose name is
 the null-terminated string pointed to by n_a_m_e_.
 The mode of the directory is m_o_d_e_. The special
 entries "." and ".." are not present.

 m_a_k_d_i_r_ may be invoked only by the super-user.

SEE ALSO mkdir(I)

DIAGNOSTICS Error bit (c-bit) is set if the directory already
 exists or if the user is not the super-user.

BUGS --

 - 1 -

MDATE (II) 3/15/72 MDATE (II)

NAME mdate -- set modified date on file

SYNOPSIS (time to r0-r1)
 sys mdate; file / mdate = 30.

DESCRIPTION F_i_l_e_ is the address of a null-terminated string
 giving the name of a file. The modified time of
 the file is set to the time given in the r0-r1
 registers.

 This call is allowed only to the super-user or to
 the owner of the file.

SEE ALSO --

DIAGNOSTICS Error bit is set if the user is neither the owner
 nor the super-user or if the file cannot be
 found.

BUGS --

 - 1 -

MOUNT (II) 3/15/72 MOUNT (II)

NAME mount -- mount file system

SYNOPSIS sys mount; special; name / mount = 21.

DESCRIPTION m_o_u_n_t_ announces to the system that a removable
 file system has been mounted on special file spe-
 ___c_i_a_l_; from now on, references to file n_a_m_e_ will
 refer to the root file on the newly mounted file
 system. S_p_e_c_i_a_l_ and n_a_m_e_ are pointers to null-
 terminated strings containing the appropriate
 path names.

 N_a_m_e_ must exist already. If it had contents,
 they are inaccessible while the file system is
 mounted.

SEE ALSO mount(I), umount(II)

DIAGNOSTICS Error bit (c-bit) set if: s_p_e_c_i_a_l_ is inaccessi-
 ble; n_a_m_e_ does not exist; s_p_e_c_i_a_l_ is already
 mounted; n_a_m_e_ is not on the RF; there are already
 four special files mounted.

BUGS At most four removable devices can be mounted at
 a time. This call should be restricted to the
 super-used.

 - 1 -

NICE (II) 3/15/72 NICE (II)

NAME nice -- set program in low priority

SYNOPSIS sys nice / nice = 34.

DESCRIPTION The currently executing process is set into the
 lowest priority execution queue. Background jobs
 that execute a very long time should do this.
 Once done, there is no way to restore a process
 to normal priority.

SEE ALSO formerly known as "hog"

DIAGNOSTICS --

BUGS --

 - 1 -

OPEN (II) 3/15/72 OPEN (II)

NAME open -- open for reading or writing

SYNOPSIS sys open; name; mode / open = 5.
 (descriptor in r0)

DESCRIPTION o_p_e_n_ opens the file n_a_m_e_ for reading (if m_o_d_e_ is
 0) or writing (if m_o_d_e_ is non-zero). n_a_m_e_ is the
 address of a string of ASCII characters repre-
 senting a path name, terminated by a null charac-
 ter.

 The file descriptor should be saved for subse-
 quent calls to read (or write) and close.

 In both the read and write case the file pointer
 is set to the beginning of the file.

SEE ALSO creat(II), read(II), write(II), close(II)

DIAGNOSTICS The error bit (c-bit) is set if the file does not
 exist, if one of the necessary directories does
 not exist or is unreadable, if the file is not
 readable (resp. writable), or if 10 files are
 open.

BUGS --

 - 1 -

PIPE (II) 1/15/73 PIPE (II)

NAME pipe -- create a pipe

SYNOPSIS sys pipe / pipe = 42.; not in assembler
 (file descriptor in r0)

DESCRIPTION The p_i_p_e_ system call creates an I/O mechanism
 called a pipe. The file descriptor returned can
 be used in both read and write operations. When
 the pipe is written, the data is buffered up to
 504 bytes at which time the writing process is
 suspended. A read on the pipe will pick up the
 buffered data.

 It is assumed that after the p_i_p_e_ has been set
 up, two (or more) cooperating processes (created
 by subsequent f_o_r_k_ calls) will pass data through
 the pipe with r_e_a_d_ and w_r_i_t_e_ calls.

 The shell has a syntax to set up a linear array
 of processes connected by pipes.

 Read calls on an empty pipe (no buffered data)
 with only one end (no synonymous file descriptors
 resulting from f_o_r_k_ or d_u_p_) return an end-of-
 file. Write calls under similar conditions are
 ignored.

SEE ALSO sh(I), read(II), write(II), fork(II)

DIAGNOSTICS The error bit (c-bit) is set if 10 files are al-
 ready open.

BUGS --

 - 1 -

QUIT (II) 3/15/72 QUIT (II)

NAME quit -- turn off quit signal

SYNOPSIS sys quit; flag / quit = 26.

DESCRIPTION When f_l_a_g_ is 0, this call disables quit signals
 from the typewriter (ASCII FS). When f_l_a_g_ is
 non-zero, quits are re-enabled, and cause execu-
 tion to cease and a core image to be produced.

 Quits should be turned off only with due consid-
 eration.

SEE ALSO intr(II)

DIAGNOSTICS --

BUGS --

 - 1 -

READ (II) 3/15/72 READ (II)

NAME read -- read from file

SYNOPSIS (file descriptor in r0)
 sys read; buffer; nbytes / read = 3.
 (nread in r0)

DESCRIPTION A file descriptor is a word returned from a suc-
 cessful o_p_e_n_ or c_r_e_a_t_ call.

 B_u_f_f_e_r_ is the location of n_b_y_t_e_s_ contiguous bytes
 into which the input will be placed. It is not
 guaranteed that all n_b_y_t_e_s_ bytes will be read;
 for example if the file refers to a typewriter at
 most one line will be returned. In any event the
 number of characters read is returned in r0.

 If r0 returns with value 0, then end-of-file has
 been reached.

SEE ALSO open(II), creat(II)

DIAGNOSTICS As mentioned, r0 is 0 on return when the end of
 the file has been reached. If the read was
 otherwise unsuccessful the error bit (c-bit) is
 set. Many conditions, can generate an error:
 physical I/O errors, bad buffer address, prepos-
 terous n_b_y_t_e_s_, file descriptor not that of an in-
 put file.

BUGS --

 - 1 -

RELE (II) 3/15/72 RELE (II)

NAME rele -- release processor

SYNOPSIS sys rele / rele = 0; not in assembler

DESCRIPTION This call causes the process to be swapped out
 immediately if another process wants to run. Its
 main reason for being is internal to the system,
 namely to implement timer-runout swaps. However,
 it can be used beneficially by programs which
 wish to loop for some reason without consuming
 more processor time than necessary.

SEE ALSO --

DIAGNOSTICS --

BUGS --

 - 1 -

SEEK (II) 3/15/72 SEEK (II)

NAME seek -- move read/write pointer

SYNOPSIS (file descriptor in r0)
 sys seek; offset; ptrname / seek = 19.

DESCRIPTION The file descriptor refers to a file open for
 reading or writing. The read (resp. write)
 pointer for the file is set as follows:

 if p_t_r_n_a_m_e_ is 0, the pointer is set to o_f_f_s_e_t_.

 if p_t_r_n_a_m_e_ is 1, the pointer is set to its
 current location plus o_f_f_s_e_t_.

 if p_t_r_n_a_m_e_ is 2, the pointer is set to the
 size of the file plus o_f_f_s_e_t_.

SEE ALSO --

DIAGNOSTICS The error bit (c-bit) is set for an undefined
 file descriptor.

BUGS A file can conceptually be as large as 2**20
 bytes. Clearly only 2**16 bytes can be addressed
 by s_e_e_k_. The problem is most acute on the large
 special files.

 - 1 -

SETUID (II) 3/15/72 SETUID (II)

NAME setuid -- set process ID

SYNOPSIS (process ID in r0)
 sys setuid / setuid = 23.

DESCRIPTION The user ID of the current process is set to the
 argument in r0. Both the effective and the real
 user ID are set. This call is only permitted to
 the super-user or if r0 is the real user ID.

SEE ALSO getuid(II)

DIAGNOSTICS Error bit (c-bit) is set as indicated.

BUGS --

 - 1 -

SLEEP (II) 9/4/72 SLEEP (II)

NAME sleep -- stop execution for interval

SYNOPSIS (seconds in r0)
 sys sleep / sleep = 35.; not in assembler

DESCRIPTION The current process is suspended from execution
 for the number of seconds specified by the con-
 tents of register 0.

SEE ALSO --

DIAGNOSTICS --

BUGS Due to the implementation, the sleep interval is
 only accurate to 256 60ths of a second (4.26
 sec). Even then, the process is placed on a low
 priority queue and must be scheduled.

 - 1 -

STAT (II) 3/15/72 STAT (II)

NAME stat -- get file status

SYNOPSIS sys stat; name; buf / stat = 18.

DESCRIPTION n_a_m_e_ points to a null-terminated string naming a
 file; b_u_f_ is the address of a 34(10) byte buffer
 into which information is placed concerning the
 file. It is unnecessary to have any permissions
 at all with respect to the file, but all directo-
 ries leading to the file must be readable.

 After s_t_a_t_, b_u_f_ has the following format:

 buf, +1 i-number
 +2,+3 flags (see below)
 +4 number of links
 +5 user ID of owner
 +6,+7 size in bytes
 +8,+9 first indirect block or contents block
 +22,+23 eighth indirect block or contents block
 +24,+25,+26,+27 creation time
 +28,+29,+30,+31 modification time
 +32,+33 unused

 The flags are as follows:

 100000 used (always on)
 040000 directory
 020000 file has been modified (always on)
 010000 large file
 000040 set user ID
 000020 executable
 000010 read, owner
 000004 write, owner
 000002 read, non-owner
 000001 write, non-owner

SEE ALSO stat(I), fstat(II)

DIAGNOSTICS Error bit (c-bit) is set if the file cannot be
 found.

BUGS --

 - 1 -

STIME (II) 3/15/72 STIME (II)

NAME stime -- set time

SYNOPSIS (time in r0-r1)
 sys stime / stime = 25.

DESCRIPTION s_t_i_m_e_ sets the system’s idea of the time and
 date. Only the super-user may use this call.

SEE ALSO date(I), time(II)

DIAGNOSTICS Error bit (c-bit) set if user is not the super-
 user.

BUGS --

 - 1 -

STTY (II) 6/12/72 STTY (II)

NAME stty -- set mode of typewriter

SYNOPSIS (file descriptor in r0)
 sys stty; arg / stty = 31.
 arg: dcrsr; dctsr; mode

DESCRIPTION s_t_t_y_ sets mode bits for a typewriter whose file
 descriptor is passed in r0. First, the system
 delays until the typewriter is quiescent. Then,
 the argument d_c_r_s_r_ is placed into the typewri-
 ter’s receiver control and status register, and
 d_c_t_s_r_ is placed in the transmitter control and
 status register. The DC-11 manual must be con-
 sulted for the format of these words. For the
 purpose of this call, the most important rôle of
 these arguments is to adjust to the speed of the
 typewriter.

 The m_o_d_e_ argument contains several bits which de-
 termine the system’s treatment of the typewriter:

 200 even parity allowed on input (e. g. for M37s)
 100 odd parity allowed on input
 040 raw mode: wake up on all characters
 020 map CR into LF; echo LF or CR as LF-CR
 010 echo (full duplex)
 004 map upper case to lower on input (e. g. M33)
 002 echo and print tabs as spaces
 001 inhibit all function delays (e. g. CRTs)

 Characters with the wrong parity, as determined
 by bits 200 and 100, are ignored.

 In raw mode, every character is passed back imme-
 diately to the program. No erase or kill pro-
 cessing is done; the end-of-file character (EOT),
 the interrupt character (DELETE) and the quit
 character (FS) are not treated specially.

 Mode 020 causes input carriage returns to be
 turned into new-lines; input of either CR or LF
 causes LF-CR both to be echoed (used for GE Ter-
 miNet 300’s and other terminals without the new-
 line function).

 Additional bits in the high order byte of the
 mode argument are used to indicate that the ter-
 minal is an IBM 2741 and to specify 2741 modes.
 These mode bits are:

 400 terminal is an IBM 2741
 1000 the 2741 has the transmit interrupt feature
 (currently ignored)
 2000 use correspondence code conversion on output

 - 1 -

STTY (II) 6/12/72 STTY (II)

 4000 use correspondence code conversion on input
 (currently ignored)

 Normal input and output code conversion for 2741s
 is EBCDIC (e. g. 963 ball and corresponding key-
 board). The presence of the transmit interrupt
 feature permits the system to do read-ahead while
 no output is in progress. In 2741 mode, the low
 order bits 331 are ignored.

SEE ALSO stty(I), gtty(II)

DIAGNOSTICS The error bit (c-bit) is set if the file descrip-
 tor does not refer to a typewriter.

BUGS This call should be used with care.

 - 2 -

SYNC (II) 6/12/72 SYNC (II)

NAME sync -- update super-block

SYNOPSIS sys sync / sync = 36.; not in assembler

DESCRIPTION s_y_n_c_ causes the super block for all file systems
 to be written out. It is only necessary on sys-
 tems in which this writing may be delayed for a
 long time, i.e., those which incorporate hardware
 protection facilities.

 It should be used by programs which examine a
 file system, for example check, df, tm, etc.

SEE ALSO --

DIAGNOSTICS --

BUGS --

 - 1 -

TIME (II) 3/15/72 TIME (II)

NAME time -- get time of year

SYNOPSIS sys time / time = 13.
 (time r0-r1)

DESCRIPTION t_i_m_e_ returns the time since 00:00:00, Jan. 1,
 1972, measured in sixtieths of a second. The
 high order word is in the r0 register and the low
 order is in the r1.

SEE ALSO date(I), mdate(II)

DIAGNOSTICS --

BUGS The time is stored in 32 bits. This guarantees a
 crisis every 2.26 years.

 - 1 -

TIMES(II) 2/10/73 TIMES(II)

NAME times -- get process times

SYNOPSIS sys times; buffer / times = 43.; not in assembler
 buffer: .=.+[24.*3]

DESCRIPTION t_i_m_e_s_ returns time-accounting information for the
 system as a whole, for the current process, and
 for the terminated child processes of the current
 process. All the times are 2-word (32-bit) num-
 bers, and the unit of measurement is 1/60 second.

 After the call, the buffer will appear as fol-
 lows:

 buffer:
 system: .=.+4 / absolute time
 .=.+4 / total system time
 .=.+4 / total swap time
 .=.+4 / other I/O wait time
 .=.+4 / idle time
 .=.+4 / total user time

 process: .=.+4 / (ignore)
 .=.+4 / time in system
 .=.+4 / (ignore)
 .=.+4 / I/O wait time
 .=.+4 / (ignore)
 .=.+4 / processor time

 child: .=.+24.

 The format of the "child" times is the same as
 that for the process times; the numbers are the
 sum of the times for all terminated direct or in-
 direct descendants of the current process.

 The "absolute" time returned is the same as that
 given by time(II). The "total system times" are
 times since the last cold boot.

FILES --

SEE ALSO time(II), time(I)

DIAGNOSTICS --

BUGS --

 - 1 -

UMOUNT (II) 3/15/72 UMOUNT (II)

NAME umount -- dismount file system

SYNOPSIS sys umount; special / umount = 22.

DESCRIPTION u_m_o_u_n_t_ announces to the system that special file
 s_p_e_c_i_a_l_ is no longer to contain a removable file
 system. The file associated with the special
 file reverts to its ordinary interpretation (see
 m_o_u_n_t_).

 The user must take care that all activity on the
 file system has ceased.

SEE ALSO umount(I), mount(II)

DIAGNOSTICS Error bit (c-bit) set if no file system was
 mounted on the special file.

BUGS Use of this call should be restricted to the su-
 per-user.

 - 1 -

UNLINK (II) 3/15/72 UNLINK (II)

NAME unlink -- remove directory entry

SYNOPSIS sys unlink; name / unlink = 10.

DESCRIPTION N_a_m_e_ points to a null-terminated string. U_n_l_i_n_k_
 removes the entry for the file pointed to by n_a_m_e_
 from its directory. If this entry was the last
 link to the file, the contents of the file are
 freed and the file is destroyed. If, however,
 the file was open in any process, the actual de-
 struction is delayed until it is closed, even
 though the directory entry has disappeared.

SEE ALSO rm(I), rmdir(I), link(II)

DIAGNOSTICS The error bit (c-bit) is set to indicate that the
 file does not exist or that its directory cannot
 be written. Write permission is not required on
 the file itself. It is also illegal to unlink a
 directory (except for the super-user).

BUGS --

 - 1 -

WAIT (II) 9/4/72 WAIT (II)

NAME wait -- wait for process to die

SYNOPSIS sys wait / wait = 7.
 (process ID in r0)
 (termination status/user status in r1)

DESCRIPTION w_a_i_t_ causes its caller to delay until one of its
 child processes terminates. If any child has
 died since the last w_a_i_t_, return is immediate; if
 there are no children, return is immediate with
 the error bit set. In the case of several chil-
 dren several w_a_i_t_s are needed to learn of all the
 deaths.

 If the error bit is not set on return, the r1
 high byte contains the low byte of the child
 process r0 when it terminated. The r1 low byte
 contains the termination status of the process
 from the following list:

 0 exit
 1 bus error
 2 illegal instruction
 3 trace trap
 4 IOT trap
 5 power fail trap
 6 EMT trap
 7 bad system call
 8 PIR interrupt
 9 floating point exception
 10 memory violation
 11 quit
 12 interrupt
 13 kill (see kill(II))
 14 User I/O (not currently possible)
 +16 core image produced

SEE ALSO exit(II), fork(II)

DIAGNOSTICS error bit (c-bit) on if no children not previous-
 ly waited for.

BUGS A child which dies, but is never waited for con-
 sumes a slot in the process table. When this ta-
 ble is full, the system is effectively hung.

 - 1 -

WRITE (II) 3/15/72 WRITE (II)

NAME write -- write on file

SYNOPSIS (file descriptor in r0)
 sys write; buffer; nbytes / write = 4.
 (number written in r0)

DESCRIPTION A file descriptor is a word returned from a suc-
 cessful o_p_e_n_ or c_r_e_a_t_ call.

 b_u_f_f_e_r_ is the address of n_b_y_t_e_s_ contiguous bytes
 which are written on the output file. The number
 of characters actually written is returned in r0.
 It should be regarded as an error if this is not
 the same as requested.

 Writes which are multiples of 512 characters long
 and begin on a 512-byte boundary are more effi-
 cient than any others.

SEE ALSO creat(II), open(II)

DIAGNOSTICS The error bit (c-bit) is set on an error: bad de-
 scriptor, buffer address, or count; physical I/O
 errors.

BUGS --

 - 1 -

ATAN, ATAN2 (III) 1/15/73 ATAN, ATAN2 (III)

NAME atan -- arc tangent function

SYNOPSIS jsr r5,atan[2]

DESCRIPTION The atan entry returns the arc tangent of fr0 in
 fr0. The range is -J/2 to J/2.

 The atan2 entry returns the arc tangent of
 fr0/fr1 in fr0. The range is -J to J.

FILES kept in /lib/liba.a

SEE ALSO --

DIAGNOSTICS there is no error return

BUGS --

 - 1 -

ATOF (III) 1/15/73 ATOF (III)

NAME atof -- ascii to floating

SYNOPSIS jsr r5,atof; subr

DESCRIPTION a_t_o_f_ will convert an ascii stream to a floating
 number returned in fr0.

 The subroutine s_u_b_r_ (supplied by the caller) is
 called on r5 for each character of the ascii
 stream. s_u_b_r_ should return the character in r0.
 The first character not used in the conversion is
 left in r0.

 The only numbers recognized are: an optional mi-
 nus sign followed by a string of digits optional-
 ly containing one decimal point, then followed
 optionally by the letter "e" followed by a signed
 integer.

 The subroutine s_u_b_r_ must not disturb any regis-
 ters.

FILES kept in /lib/liba.a

SEE ALSO Calls atoi (III)

DIAGNOSTICS There are none; overflow results in a very large
 number and garbage characters terminate the scan.

BUGS The routine should accept initial "+", initial
 blanks, and "E" for "e".

 Overflow should be signalled with the carry bit.

 - 1 -

ATOI (III) 1/15/73 ATOI (III)

NAME atoi -- ascii to integer

SYNOPSIS jsr r5,atoi; subr

DESCRIPTION a_t_o_i_ will convert an ascii stream to a binary
 number returned in r1.

 The subroutine s_u_b_r_ (supplied by the caller) is
 called on r5 for each character of the ascii
 stream. s_u_b_r_ should return the character in r0.
 The first character not used in the conversion is
 left in r0.

 The numbers recognized are: an optional minus
 sign followed by a string of digits.

 The subroutine s_u_b_r_ must not disturb any regis-
 ters.

FILES kept in /lib/liba.a

SEE ALSO --

DIAGNOSTICS There are none; the routine charges on regardless
 of consequences; see BUGS.

BUGS It pays no attention to overflow - you get what-
 ever the machine instructions mul and div happen
 to leave in the low order half - in fact, the
 carry bit should be set and isn’t.

 The routine should accept initial "+" and initial
 blanks.

 - 1 -

COMPAR (III) 1/15/73 COMPAR (III)

NAME compar -- default comparison routine for qsort

SYNOPSIS jsr pc,compar

DESCRIPTION Compar is the default comparison routine called
 by qsort and is separated out so that the user
 can supply his own comparison.

 The routine is called with the width (in bytes)
 of an element in r3 and it compares byte-by-byte
 the element pointed to by r0 with the element
 pointed to by r4.

 Return is via the condition codes, which are
 tested by the instructions "blt" and "bgt". That
 is, in the absence of overflow, then the condi-
 tion (r0) < (r4) should leave the Z-bit off and
 N-bit on while (r0) > (r4) should leave Z and N
 off. Still another way of putting it is that
 for elements of length 1 the instruction

 cmpb (r0),(r4)

 suffices.

 Only r0 is changed by the call.

FILES kept in /lib/liba.a

SEE ALSO qsort (III)

DIAGNOSTICS --

BUGS It could be recoded to run faster.

 - 1 -

CRYPT (III) 1/15/73 CRYPT (III)

NAME crypt -- password encoding

SYNOPSIS mov $key,r0
 jsr pc,crypt

DESCRIPTION On entry, r0 should point to a string of charac-
 ters terminated by an ASCII NULL. The routine
 performs an operation on the key which is diffi-
 cult to invert (i.e. encrypts it) and leaves the
 resulting eight bytes of ASCII alphanumerics in a
 global cell called "word".

 Login uses this result as a password.

FILES kept in /lib/liba.a

SEE ALSO passwd(I),passwd(V), login(I)

DIAGNOSTICS there are none; garbage is accepted.

BUGS --

 - 1 -

CTIME (III) 1/15/73 CTIME (III)

NAME ctime -- convert date and time to ASCII

SYNOPSIS sys time
 mov $buffer,r2
 jsr pc,ctime

DESCRIPTION The output buffer is 16 characters long and the
 time has the format

 Oct 9 17:32:24\0

 The input time must be in the r0 and r1 registers
 in the form returned by s_y_s_ t_i_m_e_.

FILES kept in /lib/liba.a

SEE ALSO ptime(III), time(II)

DIAGNOSTICS --

BUGS The routine must be reassembled for leap year.
 Dec 31 is followed by Dec 32 and so on.

 - 1 -

DDSPUT, DDSINIT (III) 1/15/73 DDSPUT, DDSINIT (III)

NAME ddsput -- put a character on display data set

SYNOPSIS (file descriptor in r0)
 jsr pc,ddsinit

 (character in r0)
 jsr pc,ddsput

DESCRIPTION These routines provide an interface to the Dis-
 play Data Set, a peculiar device which can be
 called by Picturephone sets and which will dis-
 play some of the ASCII character set and certain
 other graphics on the Picturephone screen.

 If the DC11 or other interface hardware is not
 already set up to talk to the Display Data Set,
 the d_d_s_i_n_i_t_ entry should be called with the ap-
 propriate file descriptor in r0. On the only
 known DDS attached to UNIX, the associated spe-
 cial file is called "/dev/ttyc". d_d_s_i_n_i_t_ also
 clears the display.

 Thereafter, characters may be displayed by call-
 ing d_d_s_p_u_t_. To the extent possible, d_d_s_p_u_t_ simu-
 lates an ordinary terminal. Characters falling
 to the right of the 22X22 screen area are ig-
 nored; the 23rd line on the screen causes the
 screen to be erased and that line to be put at
 the top of the new display. Certain ASCII char-
 acters are interpreted specially as follows:

 FF clear screen, go to top left
 HT expand to right number of spaces
 DC1 treat as reverse line feed (move N)
 DC2 move cursor 1 place right (move E)
 DC3 forward line feed (move S)
 DC4 backspace 1 position (move W)
 SO enter graph mode
 SI leave graph mode
 CR put cursor at start of current line

 Graph mode allows display of the non-ASCII char-
 acters and will be described when hell freezes
 over.

 Lower-case ASCII alphabetics are mapped into up-
 per case. Several ASCII non-alphabetic graphics
 are unavailable as well. Also the lower right
 circle of the "%" character is missing. Also one
 of the circuit cards in the DDS has a crack in it
 and sometimes it doesn’t work. All in all, it is
 best to avoid this device.

FILES kept in /lib/liba.a

 - 1 -

DDSPUT, DDSINIT (III) 1/15/73 DDSPUT, DDSINIT (III)

SEE ALSO AT&T writeup on DDS

DIAGNOSTICS --

BUGS yes

 - 2 -

ECVT, FCVT (III) 1/15/73 ECVT, FCVT (III)

NAME ecvt, fcvt -- output conversion

SYNOPSIS jsr pc,ecvt

 or

 jsr pc,fcvt

DESCRIPTION Ecvt is called with a floating point number in
 fr0.

 On exit, the number has been converted into a
 string of ascii digits in a buffer pointed to by
 r0. The number of digits produced is controlled
 by a global variable "_ndigits".

 Moreover, the position of the decimal point is
 contained in r2: r2=0 means the d.p. is at the
 left hand end of the string of digits; r2>0 means
 the d.p. is within or to the right of the string.

 The sign of the number is indicated by r1 (0 for
 +; 1 for -).

 The low order digit has suffered decimal rounding
 (i. e. may have been carried into).

 Fcvt is identical to ecvt, except that the cor-
 rect digit has had decimal rounding for F-style
 output of the number of digits specified by
 "_ndigits".

FILES kept in /lib/liba.a

SEE ALSO ftoa(III)

DIAGNOSTICS --

BUGS --

 - 1 -

EXP (III) 1/15/73 EXP (III)

NAME exp -- exponential function

SYNOPSIS jsr r5,exp

DESCRIPTION The exponential of fr0 is returned in fr0.

FILES kept in /lib/liba.a

SEE ALSO --

DIAGNOSTICS If the result is not representable, the c-bit is
 set and the largest positive number is returned.

 Zero is returned if the result would underflow.

BUGS ---

 - 1 -

FTOA (III) 1/15/73 FTOA (III)

NAME ftoa -- floating to ascii conversion

SYNOPSIS jsr r5,ftoa; subr

DESCRIPTION f_t_o_a_ will convert the floating point number in
 fr0 into ascii in the form

 [-]ddddd.dd*

 if possible, otherwise in the form

 [-]d.dddddddde_[-]dd*.

 For each character generated by ftoa, the subrou-
 tine s_u_b_r_ (supplied by the caller) is called on
 register r5 with the character in r0.

 The number of digits can be changed by changing
 the value of "_ndigits" in ecvt (default is 10.).

 The subroutine s_u_b_r_ must not disturb any regis-
 ters.

FILES kept in /lib/liba.a

SEE ALSO ecvt(III), itoa(III)

DIAGNOSTICS --

BUGS --

 - 1 -

FTOO (III) 1/15/73 FTOO (III)

NAME ftoo -- floating to octal conversion

SYNOPSIS jsr r5,ftoo; subr

DESCRIPTION ftoo wil convert the floating point number in fr0
 into ascii in the conventional octal form

 000000;000000;000000;000000

 For each character generated by ftoo, the subrou-
 tine s_u_b_r_ (supplied by the caller) is called on
 register r5 with the character in r0.

 The subroutine s_u_b_r_ must not disturb any regis-
 ters.

FILES kept in /lib/liba.a

SEE ALSO --

DIAGNOSTICS --

BUGS --

 - 1 -

CONNECT, GERTS (III) 3/15/72 CONNECT, GERTS (III)

NAME connect, gerts -- Gerts communication over 201

SYNOPSIS jsr r5,connect
 (error return)

 jsr r5,gerts; fc; oc; ibuf; obuf
 (error return)

 other entry points: gcset, gout

DESCRIPTION The GCOS GERTS interface is so bad that a de-
 scription here is inappropriate. Anyone needing
 to use this interface should seek divine guid-
 ance.

FILES /dev/dn0, /dev/dp0
 kept in /lib/liba.a

SEE ALSO dn(IV), dp(IV), HIS documentation

DIAGNOSTICS --

BUGS --

 - 1 -

GETC, GETW, FOPEN (III) 3/15/72 GETC, GETW, FOPEN (III)

NAME getw, getc, fopen -- buffered input

SYNOPSIS mov $filename,r0
 jsr r5,fopen; iobuf

 jsr r5,getc; iobuf
 (character in r0)

 jsr r5,getw; iobuf
 (word in r0)

DESCRIPTION These routines are used to provide a buffered in-
 put facility. i_o_b_u_f_ is the address of a 518(10)
 byte buffer area whose contents are maintained by
 these routines. Its format is:

 ioptr: .=.+2 / file descriptor
 .=.+2 / characters left in buffer
 .=.+2 / ptr to next character
 .=.+512. / the buffer

 f_o_p_e_n_ may be called initially to open the file.
 On return, the error bit (c-bit) is set if the
 open failed. If f_o_p_e_n_ is never called, g_e_t_ will
 read from the standard input file.

 g_e_t_c_ returns the next byte from the file in r0.
 The error bit is set on end of file or a read er-
 ror.

 g_e_t_w_ returns the next word in r0. g_e_t_c_ and g_e_t_w_
 may be used alternately; there are no odd/even
 problems.

 i_o_b_u_f_ must be provided by the user; it must be on
 a word boundary.

 To reuse the same buffer for another file, it is
 sufficient to close the original file and call
 f_o_p_e_n_ again.

FILES kept in /lib/liba.a

SEE ALSO open(II), read(II), putc(III)

DIAGNOSTICS c-bit set on EOF or error

BUGS --

 - 1 -

HYPOT (III) 6/12/72 HYPOT (III)

NAME hypot -- calculate hypotenuse

SYNOPSIS movf a,fr0
 movf b,fr1
 jsr r5,hypot
 movf fr0,...

DESCRIPTION The square root of fr0*fr0 + fr1*fr1 is returned
 in fr0. The calculation is done in such a way
 that overflow will not occur unless the answer is
 not representable in floating point.

FILES kept in /lib/liba.a

SEE ALSO sqrt(III)

DIAGNOSTICS The c-bit is set if the result cannot be repre-
 sented.

BUGS --

 - 1 -

ITOA (III) 3/15/72 ITOA (III)

NAME itoa -- integer to ascii conversion

SYNOPSIS jsr r5,itoa; subr

DESCRIPTION i_t_o_a_ will convert the number in r0 into ascii
 decimal preceded by a - sign if appropriate. For
 each character generated by itoa, the subroutine
 s_u_b_r_ (supplied by the caller) is called on regis-
 ter r5 with the character in r0.

 The subroutine s_u_b_r_ must not disturb any regis-
 ters.

FILES kept in /lib/liba.a

SEE ALSO --

DIAGNOSTICS --

BUGS --

 - 1 -

LOG (III) 3/15/72 LOG (III)

NAME log -- logarithm (base e)

SYNOPSIS jsr r5,log

DESCRIPTION The logarithm (base e) of fr0 is returned in fr0.

FILES kept in /lib/liba.a

SEE ALSO --

DIAGNOSTICS The error bit (c-bit) is set if the input argu-
 ment is less than or equal to zero and the result
 is set to the largest negative number.

BUGS --

 - 1 -

MESG (III) 3/15/72 MESG (III)

NAME mesg -- write message on typewriter

SYNOPSIS jsr r5,mesg; <Now is the time\0>; .even

DESCRIPTION m_e_s_g_ writes the string immediately following its
 call onto the standard output file. The string
 must be terminated by an ASCII NULL byte.

FILES kept in /lib/liba.a

SEE ALSO --

DIAGNOSTICS --

BUGS --

 - 1 -

NLIST (III) 6/12/72 NLIST (III)

NAME nlist -- get entries from name list

SYNOPSIS jsr r5,nlist; file; list
 file: <file name\0>; .even
 list:
 <name1xxx>; type1; value1
 <name2xxx>; type2; value2
 0

DESCRIPTION n_l_i_s_t_ will examine the name list in the given as-
 sembler output file and selectively extract a
 list of values. The name list consists of a list
 of 8-character names (null padded) each followed
 by two words. The list is terminated with a ze-
 ro. Each name is looked up in the name list of
 the file. If the name is found, the type and
 value of the name are placed in the two words
 following the name. If the name is not found,
 the type entry is set to -1.

 This subroutine is useful for examining the sys-
 tem name list kept in the file /sys/sys/unix. In
 this way programs can obtain system ’magic’ num-
 bers that are up to date.

FILES kept in /lib/liba.a

SEE ALSO a.out(V)

DIAGNOSTICS All type entries are set to -1 if the file cannot
 be found or if it is not a valid namelist.

BUGS --

 - 1 -

POW (III) 1/15/73 POW (III)

NAME pow -- floating exponentiation x^y

SYNOPSIS movf x,fr0
 movf y,fr1
 jsr pc,pow
 movf fr0,...

DESCRIPTION The value of x^y (i.e. xy) is returned in fr0.

 0^x returns zero for all x.

 (-x)^y returns a result only if y is an integer.

FILES kept in /lib/liba.a

SEE ALSO exp(III), log(III)

DIAGNOSTICS The carry bit is set on return in case of over-
 flow or in case of 0^0 or (-x)^y for y non-inte-
 ger.

BUGS --

 - 1 -

PTIME (III) 3/15/72 PTIME (III)

NAME ptime -- print date and time

SYNOPSIS sys time
 mov file,r2
 jsr pc,ptime

DESCRIPTION p_t_i_m_e_ prints the date and time in the form

 Oct 9 17:20:33.sp on the file whose file
 descriptor is in r2. The string is 15 characters
 long. The time to be printed must be placed in
 the r0 and r1 registers in the form returned by
 s_y_s_ t_i_m_e_.

FILES kept in /lib/liba.a

SEE ALSO time(II), ctime(III) (used to do the conversion)

DIAGNOSTICS --

BUGS see ctime

 - 1 -

PUTC,PUTW,FCREAT,FLUSH (III) 6/12/72 PUTC,PUTW,FCREAT,FLUSH (III)

NAME putc, putw, fcreat, flush -- buffered output

SYNOPSIS mov $filename,r0
 jsr r5,fcreat; iobuf

 (get byte in r0)
 jsr r5,putc; iobuf

 (get word in r0)
 jsr r5,putw; iobuf

 jsr r5,flush; iobuf

DESCRIPTION f_c_r_e_a_t_ creates the given file (mode 17) and sets
 up the buffer i_o_b_u_f_ (size 518(10) bytes); p_u_t_c_
 and p_u_t_w_ write a byte or word respectively onto
 the file; f_l_u_s_h_ forces the contents of the buffer
 to be written, but does not close the file. The
 format of the buffer is:

 iobuf: .=.+2 / file descriptor
 .=.+2 / characters unused in buffer
 .=.+2 / ptr to next free character
 .=.+512. / buffer

 f_c_r_e_a_t_ sets the error bit (c-bit) if the file
 creation failed; none of the other routines re-
 turn error information.

 Before terminating, a program should call f_l_u_s_h_
 to force out the last of the output.

 The user must supply i_o_b_u_f_, which should begin on
 a word boundary.

 To write a new file using the same buffer, it
 suffices to call f_l_u_s_h_, close the file, and call
 f_c_r_e_a_t_ again.

FILES kept in /lib/liba.a

SEE ALSO creat(II), write(II), getc(III)

DIAGNOSTICS error bit possible on f_c_r_e_a_t_ call

BUGS --

 - 1 -

QSORT (III) 6/12/72 QSORT (III)

NAME qsort -- quicker sort

SYNOPSIS (base of data in r1)
 (end+1 of data in r2)
 (element width in r3)
 jsr pc,qsort

DESCRIPTION q_s_o_r_t_ is an implementation of the quicker sort
 algorithm. It is designed to sort equal length
 elements. Registers r1 and r2 delimit the region
 of core containing the array of byte strings to
 be sorted: r1 points to the start of the first
 string, r2 to the first location above the last
 string. Register r3 contains the length of each
 string. r2-r1 should be a multiple of r3. On
 return, r0, r1, r2, r3, r4 are destroyed.

 The routine compar (q.v.) is called to compare
 elements and may be replaced by the user.

FILES kept in /lib/liba.a

SEE ALSO compar(III)

DIAGNOSTICS --

BUGS It scribbles on r4.

 - 1 -

RAND (III) 1/15/73 RAND (III)

NAME rand -- random number generator

SYNOPSIS jsr pc,srand /to initialize
 jsr pc,rand /to get a random number

DESCRIPTION The routine uses a multiplicative congruential
 random number generator to return successive
 pseudo-random numbers in r0 in the range from 1
 to 2^15-1.

 The generator is reinitialized by calling srand
 with 1 in r0.

 It can be set to a random starting point by call-
 ing srand with whatever you like in r0, for exam-
 ple the result left in r1 from s_y_s_ t_i_m_e_.

FILES kept in /lib/liba.a

SEE ALSO --

DIAGNOSTICS --

BUGS --

WARNING The author of this routine has been writing ran-
 dom-number generators for many years and has nev-
 er been known to write one that worked.

 - 1 -

SALLOC (III) 6/15/72 SALLOC (III)

NAME salloc -- string manipulation routines

SYNOPSIS (get size in r0)
 jsr pc,allocate

 (get source pointer in r0,
 destination pointer in r1)
 jsr pc,copy

 jsr pc,wc

 (all following instructions assume r1 contains pointer)

 jsr pc,release

 (get character in r0)
 jsr pc,putchar

 jsr pc,lookchar
 (character in r0)

 jsr pc,getchar
 (character in r0)

 (get character in r0)
 jsr pc,alterchar

 (get position in r0)
 jsr pc,seekchar

 jsr pc,backspace
 (character in r0)

 (get word in r0)
 jsr pc,putword

 jsr pc,lookword
 (word in r0)

 jsr pc,getword
 (word in r0)

 (get word in r0)
 jsr pc,alterword

 jsr pc,backword
 (word in r0)

 jsr pc,length
 (length in r0)

 jsr pc,position
 (position in r0)

 - 1 -

SALLOC (III) 6/15/72 SALLOC (III)

 jsr pc,rewind

 jsr pc,create

 jsr pc,fsfile

 jsr pc,zero

DESCRIPTION This package is a complete set of routines for
 dealing with almost arbitrary length strings of
 words and bytes. The strings are stored on a
 disk file, so the sum of their lengths can be
 considerably larger than the available core.

 For each string there is a header of four words,
 namely a write pointer, a read pointer and point-
 ers to the beginning and end of the block con-
 taining the string. Initially the read and write
 pointers point to the beginning of the string.
 All routines that refer to a string require the
 header address in r1. Unless the string is de-
 stroyed by the call, upon return r1 will point to
 the same string, although the string may have
 grown to the extent that it had to be be moved.

 _a_l_l_o_c_a_t_e obtains a string of the requested size
 and returns a pointer to its header in r1.

 r_e_l_e_a_s_e_ releases a string back to free storage.

 p_u_t_c_h_a_r_ and p_u_t_w_o_r_d_ write a byte or word respec-
 tively into the string and advance the write
 pointer.

 _l_o_o_k_c_h_a_r and _l_o_o_k_w_o_r_d read a byte or word respec-
 tively from the string but do not advance the
 read pointer.

 g_e_t_c_h_a_r_ and g_e_t_w_o_r_d_ read a byte or word respec-
 tively from the string and advance the read
 pointer.

 a_l_t_e_r_c_h_a_r_ and a_l_t_e_r_w_o_r_d_ write a byte or word re-
 spectively into the string where the read pointer
 is pointing and advance the read pointer.

 b_a_c_k_s_p_a_c_e_ and b_a_c_k_w_o_r_d_ read the last byte or word
 written and decrement the write pointer.

 All write operations will automatically get a
 larger block if the current block is exceeded.
 All read operations return with the error bit set
 if attempting to read beyond the write pointer.

 - 2 -

SALLOC (III) 6/15/72 SALLOC (III)

 s_e_e_k_c_h_a_r_ moves the read pointer to the offset
 specified in r0.

 l_e_n_g_t_h_ returns the current length of the string
 (beginning pointer to write pointer) in r0.

 p_o_s_i_t_i_o_n_ returns the current offset of the read
 pointer in r0.

 r_e_w_i_n_d_ moves the read pointer to the beginning of
 the string.

 c_r_e_a_t_e_ returns the read and write pointers to the
 beginning of the string.

 f_s_f_i_l_e_ moves the read pointer to the current po-
 sition of the write pointer.

 z_e_r_o_ zeros the whole string and sets the write
 pointer to the beginning of the string.

 c_o_p_y_ copies the string whose header pointer is in
 r0 to the string whose header pointer is in r1.
 Care should be taken in using the copy instruc-
 tion since r1 will be changed if the contents of
 the source string is bigger than the destination
 string.

 w_c_ forces the contents of the internal buffers
 and the header blocks to be written on disc.

FILES The allocator is in /lib/libs.a; the -_s_ option to
 l_d_ will link edit references to the allocator.

 alloc.d is the temporary file used to contain the
 strings.

SEE ALSO --

DIAGNOSTICS "error in copy" if a disk write error occurs dur-
 ing the execution of the copy instruction. "er-
 ror in allocator" if any routine is called with a
 bad header pointer. "Cannot open output file" if
 file alloc.d cannot be created or opened. "Out
 of space" if there’s no available block of the
 requested size or no headers available for a new
 block.

BUGS --

 - 3 -

SIN, COS (III) 3/15/72 SIN, COS (III)

NAME sin, cos -- sine cosine

SYNOPSIS jsr r5,sin (cos)

DESCRIPTION The sine (cosine) of fr0 in radians is returned
 in fr0.

 The magnitude of the argument should be checked
 by the caller to make sure the result is meaning-
 ful.

FILES kept in /lib/liba.a

SEE ALSO --

DIAGNOSTICS there are none

BUGS --

 - 1 -

SQRT (III) 3/15/72 SQRT (III)

NAME sqrt -- square root function

SYNOPSIS jsr r5,sqrt

DESCRIPTION The square root of fr0 is returned in fr0.

FILES kept in /lib/liba.a

SEE ALSO --

DIAGNOSTICS The c-bit is set on negative arguments and 0 is
 returned.

BUGS --

 - 1 -

SWITCH (III) 3/15/72 SWITCH (III)

NAME switch -- switch on value

SYNOPSIS (switch value in r0)
 jsr r5,switch; swtab
 (not-found return)
 swtab: val1; lab1;
 valn; labn

DESCRIPTION s_w_i_t_c_h_ compares the value of r0 against each of
 the vali; if a match is found, control is trans-
 ferred to the corresponding labi (after popping
 the stack once). If no match has been found by
 the time a null labi occurs, s_w_i_t_c_h_ returns.

FILES kept in /lib/liba.a

SEE ALSO --

DIAGNOSTICS --

BUGS --

 - 1 -

TTYN (III) 1/15/73 TTYN (III)

NAME ttyn -- return name of current tty

SYNOPSIS jsr pc,ttyn

DESCRIPTION The routine hunts up the name of the input tty
 attached to the process (one byte from the set
 {012345678abc} at present) and returns it in r0.

 "x" is returned if no genuine input tty is at-
 tached to the process.

FILES kept in /lib/liba.a

SEE ALSO fstat(II)

DIAGNOSTICS --

BUGS --

 - 1 -

DC (IV) 6/12/72 DC (IV)

NAME dc -- DC-11 communications interfaces

DESCRIPTION
 The special files /dev/tty0, /dev/tty1, ... refer to the
 DC11 asynchronous communications interfaces. At the mo-
 ment there are ten of them, but the number is subject to
 change.

 When one of these files is opened, it causes the process
 to wait until a connection is established. (In practice,
 however, user’s programs seldom open these files; they
 are opened by i_n_i_t_ and become a user’s standard input and
 output file.) The very first typewriter file open in a
 process becomes the c_o_n_t_r_o_l_ t_y_p_e_w_r_i_t_e_r_ for that process.
 The control typewriter plays a special role in handling
 quit or interrupt signals, as discussed below. The con-
 trol typewriter is inherited by a child process during a
 f_o_r_k_.

 A terminal associated with one of these files ordinarily
 operates in full-duplex mode. Characters may be typed at
 any time, even while output is occurring, and are only
 lost when the system’s character input buffers become
 completely choked, which is rare, or when the user has
 accumulated the maximum allowed number of input charac-
 ters which have not yet been read by some program. Cur-
 rently this limit is 150 characters. When this is hap-
 pening the character "#" is echoed for every lost input
 character.

 When first opened, the interface mode is ASCII charac-
 ters; 150 baud; even parity only accepted; 10 bits/char-
 acter (one stop bit); and newline action character. The
 system delays transmission after sending certain function
 characters. Delays for horizontal tab, newline, and form
 feed are calculated for the Teletype Model 37; the delay
 for carriage return is calculated for the GE Ter-
 miNet 300. Most of these operating states can be changed
 by using the system call stty(II). In particular the
 following hardware states are program settable indepen-
 dently for input and output (see DC11 manual): 134.5,
 150, 300, or 1200 baud; one or two stop bits on output;
 and 5, 6, 7, or 8 data bits/character. In addition, the
 following software modes can be invoked: acceptance of
 even parity, odd parity, or both; a raw mode in which all
 characters may be read one at a time; a carriage return
 (CR) mode in which CR is mapped into newline on input and
 either CR or line feed (LF) cause echoing of the sequence
 LF-CR; mapping of upper case letters into lower case;
 suppression of echoing; suppression of delays after func-
 tion characters; the printing of tabs as spaces; and set-
 ting the system to handle IBM 2741s. See getty(VII) for
 the way that terminal speed and type are detected.

 - 1 -

DC (IV) 6/12/72 DC (IV)

 Normally, typewriter input is processed in units of
 lines. This means that a program attempting to read will
 be suspended until an entire line has been typed. Also,
 no matter how many characters are requested in the read
 call, at most one line will be returned. It is not how-
 ever necessary to read a whole line at once; any number
 of characters may be requested in a read, even one, with-
 out losing information.

 During input, erase and kill processing is normally done.
 The character "#" erases the last character typed, except
 that it will not erase beyond the beginning of a line or
 an EOT. The character "@" kills the entire line up to
 the point where it was typed, but not beyond an EOT.
 Both these characters operate on a keystroke basis inde-
 pendently of any backspacing or tabbing that may have
 been done. Either "@" or "#" may be entered literally by
 preceding it by "\"; the erase or kill character remains,
 but the "\" disappears.

 It is possible to use raw mode in which the program read-
 ing is awakened on each character. In raw mode, no erase
 or kill processing is done; and the EOT, quit and inter-
 rupt characters are not treated specially.

 The ASCII EOT character may be used to generate an end of
 file from a typewriter. When an EOT is received, all the
 characters waiting to be read are immediately passed to
 the program, without waiting for a new-line. Thus if
 there are no characters waiting, which is to say the EOT
 occurred at the beginning of a line, zero characters will
 be passed back, and this is the standard end-of-file sig-
 nal. The EOT is not passed on except in raw mode.

 When the carrier signal from the dataset drops (usually
 because the user has hung up his terminal) any read re-
 turns with an end-of-file indication. Thus programs
 which read a typewriter and test for end-of-file on their
 input can terminate appropriately when hung up on.

 Two characters have a special meaning when typed. The
 ASCII DEL character (sometimes called "rubout") is the
 i_n_t_e_r_r_u_p_t_ signal. When this character is received from a
 given typewriter, a search is made for all processes
 which have this typewriter as their control typewriter,
 and which have not informed the system that they wish to
 ignore interrupts. If there is more than one such
 process, one of these is selected, for practical purposes
 at random. The process is either forced to exit or a
 trap is simulated to an agreed-upon location in the
 process. See intr(II).

 The ASCII character FS is the q_u_i_t_ signal. Its treatment
 is identical to the interrupt signal except that unless

 - 2 -

DC (IV) 6/12/72 DC (IV)

 the receiving process has made other arrangements it will
 not only be terminated but a core image file will be gen-
 erated. See quit(II). The character is not passed on
 except in raw mode.

 Output is prosaic compared to input. When one or more
 characters are written, they are actually transmitted to
 the terminal as soon as previously-written characters
 have finished typing. Input characters are echoed by
 putting them in the output queue as they arrive. When a
 process produces characters more rapidly than they can be
 typed, it will be suspended when its output queue exceeds
 some limit. When the queue has drained down to some
 threshold the program is resumed. Even-parity is always
 generated on output. The EOT character is not transmit-
 ted to prevent terminals which respond to it from being
 hung up.

 The system will handle IBM 2741 terminals. See get-
 ty(VII) for the way that 2741s are detected. In 2741
 mode, the hardware state is: 134.5 baud; one output stop
 bit; and 7 bits/character. Because the 2741 is inherent-
 ly half-duplex, input is not echoed. Proper function de-
 lays are provided. For 2741s without a feature known as
 "transmit interrupt" it is not possible to collect input
 ahead of the time that a program reads the typewriter,
 because once the keyboard has been enabled there is no
 way to send further output to the 2741. It is currently
 assumed that the feature is absent; thus the keyboard is
 unlocked only when some program reads. The interrupt
 signal (normally ASCII DEL) is simulated when the 2741
 "attention" key is pushed to generate either a 2741 style
 EOT or a break. It is not possible to generate anything
 corresponding to the end-of-file EOT or the quit signal.
 Currently IBM EBCDIC is default for input and output;
 correspondence code output is settable (see stty(I)).
 The full ASCII character set is not available: "[", "]",
 "{", "}", "˜", are missing on input and are printed as
 blank on output; "c|" is used for "\"; "_" for "^"; " "
 for both "’" and"‘"on output; and " " maps into "’" on
 input. Similar mappings occur with correspondence code
 output.

FILES /dev/tty[01234567ab] 113B dataphones
 /dev/ttyc display data set
 /dev/ttyd 113B with /dev/dn1

SEE ALSO kl(IV), getty(VII)

BUGS The primarily Model 37 oriented delays may not be
 appropriate for all other ASCII terminals.

 - 3 -

DN (IV) 3/15/72 DN (IV)

NAME dn -- dn-11 ACU interface

DESCRIPTION d_n_?_ is a write-only file. Bytes written on d_n_?_
 must be ASCII as follows:

 0-9 dial 0-9
 : dial *
 ; dial #
 = end-of-number

 The entire telephone number must be presented in
 a single w_r_i_t_e_ system call.

 It is recommended that an end-of-number code be
 given even though only one of the ACU’s (113C)
 actually requires it.

FILES /dev/dn0 connected to 801 with dp0
 /dev/dn1 connected to 113C with ttyd
 /dev/dn2 not currently connected

SEE ALSO dp(IV), dc(IV), write(II)

BUGS --

 - 1 -

DP (IV) 3/15/72 DP (IV)

NAME dp -- dp-11 201 data-phone interface

DESCRIPTION d_p_?_ is a 201 data-phone interface file. r_e_a_d_ and
 w_r_i_t_e_ calls to d_p_?_ are limited to a maximum of
 400 bytes. Each write call is sent as a single
 record. Seven bits from each byte are written
 along with an eighth odd parity bit. The sync
 must be user supplied. Each read call returns
 characters received from a single record. Seven
 bits are returned unaltered; the eighth bit is
 set if the byte was not received in odd parity.
 A 20 second time out is set and a zero byte
 record is returned if nothing is received in that
 time.

FILES /dev/dp0 201 dataphone used to call GCOS

SEE ALSO dn(IV), gerts(III)

BUGS The d_p_ file is GCOS oriented. It should be more
 flexible.

 - 1 -

KL (IV) 3/15/72 KL (IV)

NAME kl -- KL-11/TTY-33 console typewriter

DESCRIPTION t_t_y_ (as distinct from t_t_y_?_) refers to the console
 typewriter hard-wired to the PDP-11 via a KL-11
 interface.

 Generally, the disciplines involved in dealing
 with t_t_y_ are similar to those for t_t_y_?_ and sec-
 tion dc(IV) should be consulted. The following
 differences are salient:

 The system calls s_t_t_y_ and g_t_t_y_ do not apply to
 this device. It cannot be placed in raw mode; on
 input, upper case letters are always mapped into
 lower case letters; a carriage return is echoed
 when a line-feed is typed.

 The quit character is not FS (as with t_t_y_?_) but
 is generated by the key labelled "alt mode."

 By appropriate console switch settings, it is
 possible to cause UNIX to come up as a single-us-
 er system with I/O on this device.

FILES /dev/tty
 /dev/tty8 synonym for /dev/tty

SEE ALSO dc(IV), init(VII)

BUGS --

 - 1 -

MEM (IV) 3/15/72 MEM (IV)

NAME mem -- core memory

DESCRIPTION m_e_m_ is a special file that is an image of the
 core memory of the computer. It may be used, for
 example, to examine, and even to patch the system
 using the debugger.

 M_e_m_ is a byte-oriented file; its bytes are num-
 bered 0 to 65,535.

 If a non-existent memory location is referenced,
 the user suffers the resultant bus error.

 Memory referenced through the file is treated
 with m_o_v_b_ instructions. Certain device registers
 do not implement DATOB cycles to odd addresses.
 Other registers react strangely to this address-
 ing.

FILES /dev/mem

SEE ALSO --

BUGS --

 - 1 -

PC (IV) 3/15/72 PC (IV)

NAME pc -- PC-11 paper tape reader/punch

DESCRIPTION p_p_t_ refers to the PC-11 paper tape reader or
 punch, depending on whether it is read or writ-
 ten.

 When p_p_t_ is opened for writing, a 100-character
 leader is punched. Thereafter each byte written
 is punched on the tape. No editing of the char-
 acters is performed. When the file is closed, a
 100-character trailer is punched.

 When p_p_t_ is opened for reading, the process waits
 until tape is placed in the reader and the reader
 is on-line. Then requests to read cause the
 characters read to be passed back to the program,
 again without any editing. This means that sev-
 eral null leader characters will usually appear
 at the beginning of the file. Likewise several
 nulls are likely to appear at the end. End-of-
 file is generated when the tape runs out.

 Seek calls for this file are meaningless.

FILES /dev/ppt

SEE ALSO --

BUGS --

 - 1 -

RF (IV) 3/15/72 RF (IV)

NAME rf -- RF11-RS11 fixed-head disk file

DESCRIPTION This file refers to the concatenation of both
 RS-11 disks. It may be either read or written,
 although writing is inherently very dangerous,
 since a file system resides there.

 The disk contains 2048 256-word blocks, numbered
 0 to 2047. Like the other block-structured de-
 vices (TC, RK) this file is addressed in blocks,
 not bytes. This has two consequences: s_e_e_k_ calls
 refer to block numbers, not byte numbers; and se-
 quential reading or writing always advance the
 read or write pointer by at least one block.
 Thus successive reads of 10 characters from this
 file actually read the first 10 characters from
 successive blocks.

FILES /dev/rf0

SEE ALSO tc(IV), rk(IV)

BUGS The fact that this device is addressed in terms
 of blocks, not bytes, is extremely unfortunate.
 It is due entirely to the fact that read and
 write pointers (and consequently the arguments to
 s_e_e_k_) are single-precision numbers.

 - 1 -

RK (IV) 3/15/72 RK (IV)

NAME rk -- RK-11/RK03 (or RK05) disk

DESCRIPTION r_k_?_ refers to an entire RK03 disk as a single se-
 quentially-addressed file. Its 256-word blocks
 are numbered 0 to 4871. Like the RF disk and the
 tape files, its addressing is block-oriented.
 Consult the rf(IV) section.

FILES /dev/rk0 user available drive
 /dev/rk1 /usr file system
 /dev/rk2 /sys file system
 /dev/rk3 /crp file system

SEE ALSO rf(IV), tc(IV)

BUGS See rf(IV)

 - 1 -

TC (IV) 3/15/72 TC (IV)

NAME tc -- TC-11/TU56 DECtape

DESCRIPTION The files tap0 ... tap7 refer to the TC-11/TU56
 DECtape drives 0 to 7. Since the logical drive
 number can be manually set, all eight files exist
 even though at present there are fewer physical
 drives.

 The 256-word blocks on a standard DECtape are
 numbered 0 to 577. However, the system makes no
 assumption about this number; a block can be read
 or written if it exists on the tape and not oth-
 erwise. An error is returned if a transaction is
 attempted for a block which does not exist.

 Addressing on the tape files, like that on the RK
 and RF disks, is block-oriented.

FILES /dev/tap?

SEE ALSO rf(IV), tap(I)

BUGS see rf(IV)

 - 1 -

TM (IV) 6/12/72 TM (IV)

NAME tm -- TM-11/TU-10 magtape interface

DESCRIPTION m_t_?_ is the DEC TU10/TM11 magtape. When opened
 for reading or writing, the magtape is rewound.
 A tape consists of a series of 512 byte records
 terminated by an end-of-file. Reading less than
 512 bytes causes the rest of a record to be ig-
 nored. Writing less than a record causes null
 padding to 512 bytes. When the magtape is closed
 after writing, an end-of-file is written.

 Seek has no effect on the magtape. The magtape
 can only be opened once at any instant.

FILES /dev/mt0 selected drive 0

SEE ALSO mt(I)

BUGS Seek should work on the magtape. Also, a provi-
 sion of having the tape open for reading and
 writing should exist. A multi-file and multi-
 reel facility should be incorporated.

 - 1 -

VT (IV) 2/11/73 VT (IV)

NAME vt -- 11/20 (vt01) interface

DESCRIPTION
 The file v_t_0_ provides the interface to a PDP 11/20 which
 runs both a VT01A-controlled Tektronix 611 storage dis-
 play, and a Federal Screw Works (Vocal Interface Divi-
 sion) voice synthesizer. The inter-computer interface is
 a pair of DR-11C word interfaces.

 Although the display has essentially only two commands,
 namely "erase screen" and "display point", the 11/20 pro-
 gram will draw points, lines, and arcs, and print text on
 the screen. The 11/20 can also type information on the
 attached 33 TTY and generate utterances via the voice
 synthesizer.

 This special file operates in two basic modes, selected
 by bit 2 (octal 04) on the 11/20’s console switches. If
 this bit is on at the opening of the file, all bytes
 written on the file are interpreted as ASCII characters
 and written on the screen. The screen has 33 lines (1/2
 a standard page). The file simulates a 37 TTY: the con-
 trol characters NL, CR, BS, and TAB are interpreted cor-
 rectly. It also interprets the usual escape sequences
 for forward and reverse half-line motion and for full-
 line reverse. Greek is not available yet. Normally,
 when the screen is full (i.e. the 34th line is started)
 the screen is erased before starting a new page. To al-
 low perusal of the displayed text, it is usual to assert
 bit 0 of the console switches (octal 01). As explained
 below, this causes the program to pause before erasing
 until one of the attached pushbuttons is depressed.

 If bit 2 of the switches is down, the display is in
 graphic mode. In this case bytes written on the file are
 interpreted as display and vocal commands. Each command
 consists of a single byte usually followed by parameter
 bytes. Often the parameter bytes represent points in the
 plotting area. Each point coordinate consists of 2 bytes
 interpreted as a 2’s complement 16-bit number. The plot-
 ting area itself measures (+_03777)X(+_03777) (numbers in
 octal); that is, 12 bits of precision. Attempts to plot
 points outside the screen limits are ignored.

 The graphic and sonic commands are:

 order (1); 1 parameter byte
 The parameter indicates a subcommand, possibly fol-
 lowed by subparameter bytes, as follows:

 erase (1)
 The screen is erased. This action may be de-
 layed, as explained below, until a pushbutton
 is depressed.

 - 1 -

VT (IV) 2/11/73 VT (IV)

 label (2); several subparameter bytes
 The following bytes up to a null character are
 taken as a label and typed on the console TTY.
 One of the console switches gives labels a spe-
 cial interpretation, as explained below.

 display label (3); several subparameter bytes
 The following bytes up to a null byte are
 printed as ASCII text on the screen. The ori-
 gin of the text is the last previous point
 plotted; or the upper left hand of the screen
 if there were none.

 point (2); 4 parameter bytes
 The 4 parameter bytes are taken as a pair of coordi-
 nates representing a point to be plotted.

 line (3); 8 parameter bytes
 The parameter bytes are taken as 2 pairs of coordi-
 nates representing the ends of a line segment which
 is plotted. Only the portion lying within the
 screen is displayed.

 frame (4); 1 parameter byte
 The parameter byte is taken as a number of sixtieths
 of a second; an externally-available lead is assert-
 ed for that time. Typically the lead is connected
 to an automatic camera which advances its film and
 opens the shutter for the specified time.

 circle (5); 6 parameter bytes
 The parameter bytes are taken as a coordinate pair
 representing the origin, and a word representing the
 radius of a circle. That portion of the circle
 which lies within the screen is plotted.

 arc (6); 12 parameter bytes
 The first 4 parameter bytes are taken to be a coor-
 dinate-pair representing the center of a circle.
 The next 4 represent a coordinate-pair specifying a
 point on this circle. The last 4 should represent
 another point on the circle. An arc is drawn
 counter-clockwise from the first circle point to the
 second. If the two points are the same, the whole
 circle is drawn. For the second point, only the
 smaller in magnitude of its two coordinates is sig-
 nificant; the other is used only to find the quad-
 rant of the end of the arc. In any event only
 points within the screen limits are plotted.

 dot-line (7); at least 6 parameter bytes
 The first 4 parameter bytes are taken as a coordi-
 nate-pair representing the origin of a dot-line.
 The next byte is taken as a signed x-increment. The

 - 2 -

VT (IV) 2/11/73 VT (IV)

 next byte is an unsigned word-count, with "0" mean-
 ing "256". The indicated number of words is picked
 up. For each bit in each word a point is plotted
 which is visible if the bit is "1", invisible if
 not. High-order bits are plotted first. Each suc-
 cessive point (or non-point) is offset rightward by
 the given x-increment.

 speak(8); several parameter bytes
 The following bytes up to a null byte are taken to
 represent phonemes which are fed to the voice syn-
 thesizer. vsp(VII) gives the encoding.

 The 3 low-order console switches of the 11/20 modify the
 operation of the display as follows.

 Bit 2 (octal 04) is examined at the time the display file
 is opened (more precisely, when the first byte is written
 after an open); as indicated, when o_n_ it selects charac-
 ter mode, otherwise graphic mode.

 Bit 1 (octal 02) determines whether TTY labels are to be
 interpreted. Unless this bit is o_n_, labels are ignored.
 (except to terminate skip mode, see below).

 Bit 0 (octal 01) determines whether the display will
 pause before erasing the screen; if o_f_f_ there will be no
 pause. If bit 0 is o_n_, the erase will occur and display-
 ing will resume only when one of the 16 pushbuttons is
 depressed.

 There is a box with 16 pushbuttons connected to the
 11/20. Their state is at all times available in the
 11/45 by executing the c_s_w_ system call (II). They are
 used by the 11/20 when it is pausing before an erase. 14
 of the buttons merely serve to allow the display to con-
 tinue. If, however, button 7 is pushed, the display will
 ignore commands up to the next erase command, then ring
 the TTY console’s bell, thereby skipping an entire pic-
 ture.

 If button 8 is depressed, the display will ignore com-
 mands up to the next TTY label (whether or not its typing
 is suppressed) before resuming the displays. Thus a se-
 quence of frames may be skipped.

FILES /dev/vt0

SEE ALSO csw(II), vsp(VII)

BUGS Two users using vt0 simultaneously can interfere
 with each other, e.g. plot phonemes or speak dis-
 play coordinates.

 - 3 -

A.OUT (V) 3/15/72 A.OUT (V)

NAME a.out -- assembler and link editor output

DESCRIPTION
 a_._o_u_t_ is the output file of the assembler a_s_ and the link
 editor l_d_. In both cases, a_._o_u_t_ may be executed provided
 there were no errors and no unresolved external refer-
 ences.

 This file has four sections: a header, the program and
 data text, a symbol table, and relocation bits (in that
 order). The last two may be empty if the program was
 loaded with the "-s" option of l_d_ or if the symbols and
 relocation have been removed by s_t_r_i_p_.

 The header always contains 8 words:

 1 A magic number (407(8))
 2 The size of the program text segment
 3 The size of the initialized data segment
 4 The size of the uninitialized (bss) segment
 5 The size of the symbol table
 6 The entry location (always 0 at present)
 7 The stack size required (0 at present)
 8 A flag indicating relocation bits have been sup-
 pressed

 The sizes of each segment are in bytes but are even. The
 size of the header is not included in any of the other
 sizes.

 When a file produced by the assembler or loader is loaded
 into core for execution, three segments are set up: the
 text segment, the data segment, and the bss (uninitial-
 ized data) segment, in that order. The text segment be-
 gins at the lowest location in the core image; the header
 is not loaded. The data segment begins immediately after
 the text segment, and the bss segment immediately after
 the data segment. The bss segment is initialized by 0’s.
 In the future the text segment will be write-protected
 and shared.

 The start of the text segment in the file is 20(8); the
 start of the data segment is 20+S9t8 (the size of the
 text) the start of the relocation information is
 20+S9t8+S9d8; the start of the symbol table is
 20+2(S9t8+S9d8) if the relocation information is present,
 20+S9t8+S9d8 if not.

 The symbol table consists of 6-word entries. The first
 four contain the ASCII name of the symbol, null-padded.
 The next word is a flag indicating the type of symbol.
 The following values are possible:

 00 undefined symbol

 - 1 -

A.OUT (V) 3/15/72 A.OUT (V)

 01 absolute symbol
 02 text segment symbol
 03 data segment symbol
 04 bss segment symbol
 40 undefined external (.globl) symbol
 41 absolute external symbol
 42 text segment external symbol
 43 data segment external symbol
 44 bss segment external symbol

 Values other than those given above may occur if the user
 has defined some of his own instructions.

 The last word of a symbol table entry contains the value
 of the symbol.

 If the symbol’s type is undefined external, and the value
 field is non-zero, the symbol is interpreted by the load-
 er l_d_ as the name of a common region whose size is indi-
 cated by the value of the symbol.

 The value of a word in the text or data portions which is
 not a reference to an undefined external symbol is exact-
 ly that value which will appear in core when the file is
 executed. If a word in the text or data portion involves
 a reference to an undefined external symbol, as indicated
 by the relocation bits for that word, then the value of
 the word as stored in the file is an offset from the as-
 sociated external symbol. When the file is processed by
 the link editor and the external symbol becomes defined,
 the value of the symbol will be added into the word in
 the file.

 If relocation information is present, it amounts to one
 word per word of program text or initialized data. There
 is no relocation information if the "suppress relocation"
 flag in the header is on.

 Bits 3-1 of a relocation word indicate the segment re-
 ferred to by the text or data word associated with the
 relocation word:

 00 indicates the reference is absolute
 02 indicates the reference is to the text segment
 04 indicates the reference is to the data segment
 06 indicates the reference is to the bss segment
 10 indicates the reference is to an undefined external
 symbol.

 Bit 0 of the relocation word indicates if o_n_ that the
 reference is relative to the pc (e.g. "clr x"); if o_f_f_,
 the reference is to the actual symbol (e.g., "clr *$x").

 The remainder of the relocation word (bits 15-4) contains

 - 2 -

A.OUT (V) 3/15/72 A.OUT (V)

 a symbol number in the case of external references, and
 is unused otherwise. The first symbol is numbered 0, the
 second 1, etc.

SEE ALSO a_s_, _l_d_, _s_t_r_i_p_, _n_m_, _u_n_(_I_)

 - 3 -

ARCHIVE (V) 3/15/72 ARCHIVE (V)

NAME archive (library) file format

DESCRIPTION The archive command a_r_ is used to combine several
 files into one. Archives are used mainly as li-
 braries to be searched by the link-editor l_d_.

 A file produced by a_r_ has a "magic number" at the
 start, followed by the constituent files, each
 preceded by a file header. The magic number is
 177555(8) (it was chosen to be unlikely to occur
 anywhere else). The header of each file is 16
 bytes long:

 0-7
 file name, null padded on the right

 8-11
 Modification time of the file

 12
 User ID of file owner

 13
 file mode

 14-15
 file size

 If the file is an odd number of bytes long, it is
 padded with a null byte, but the size in the
 header is correct.

 Notice there is no provision for empty areas in
 an archive file.

SEE ALSO a_r_, l_d_

 - 1 -

CORE (V) 2/7/73 CORE (V)

NAME format of core image

DESCRIPTION UNIX writes out a core image of a terminated
 process when any of various errors occur. See
 w_a_i_t_(II) for the list of reasons; the most common
 are memory violations, illegal instructions, bus
 errors, and user-generated quit signals.

 The core image is called "core" and is written in
 the process’s working directory (provided it can
 be; normal access controls apply).

 The size and structure of the core image file de-
 pend to some extent on which system is involved.
 In general there is a 512-byte area at the end
 which contains the system’s per-process data for
 that process. (64 bytes in older systems). The
 remainder represents the actual contents of the
 user’s core area when the core image was written.
 In the current system, this area is variable in
 size in that only the locations from user 0 to
 the program break, plus the stack, are dumped.

 When any fatal trap occurs, all the useful regis-
 ters are stored on the stack. In the current
 system, which has relocation and protection hard-
 ware, the stack used is the system stack, which
 is kept in the per-process area; in older sys-
 tems, there is only one stack, and it is located
 in the user’s core area.

 The actual format of the information is compli-
 cated because it depends on what hardware is
 present (EAE, floating-point option), whether
 single- or double-precision floating mode is in
 effect, and also involves relocating addresses in
 the system’s address space. A guru will have to
 be consulted if enlightenment is required.

 In general the debugger db(I) should be used to
 deal with core images.

SEE ALSO db(I), wait(II)

 - 1 -

DIRECTORY (V) 3/15/72 DIRECTORY (V)

NAME format of directories

DESCRIPTION A directory behaves exactly like an ordinary
 file, save that no user may write into a directo-
 ry. The fact that a file is a directory is indi-
 cated by a bit in the flag word of its i-node en-
 try.

 Directory entries are 10 bytes long. The first
 word is the i-number of the file represented by
 the entry, if non-zero; if zero, the entry is
 empty.

 Bytes 2-9 represent the (8-character) file name,
 null padded on the right. These bytes are not
 cleared for empty slots.

 By convention, the first two entries in each di-
 rectory are for "." and "..". The first is an
 entry for the directory itself. The second is
 for the parent directory. The meaning of ".." is
 modified for the root directory of the master
 file system and for the root directories of re-
 movable file systems. In the first case, there
 is no parent, and in the second, the system does
 not permit off-device references. Therefore in
 both cases ".." has the same meaning as ".".

SEE ALSO file system (V)

 - 1 -

FILE SYSTEM (V) 3/15/72 FILE SYSTEM (V)

NAME format of file system

DESCRIPTION
 Every file system storage volume (e.g. RF disk, RK disk,
 DECtape reel) has a common format for certain vital in-
 formation.

 Every such volume is divided into a certain number of 256
 word (512 byte) blocks. Blocks 0 and 1 are collectively
 known as the s_u_p_e_r_-b_l_o_c_k_ for the device; they define its
 extent and contain an i-node map and a free-storage map.
 The first word contains the number of bytes in the free-
 storage map; it is always even. It is followed by the
 map. There is one bit for each block on the device; the
 bit is "1" if the block is free. Thus if the number of
 free-map bytes is n_, the blocks on the device are num-
 bered 0 through 8n_-1. The free-map count is followed by
 the free map itself. The bit for block k_ of the device
 is in byte k_/8 of the map; it is offset k_(mod 8) bits
 from the right. Notice that bits exist for the su-
 perblock and the i-list, even though they are never allo-
 cated or freed.

 After the free map is a word containing the byte count
 for the i-node map. It too is always even. I-numbers
 below 41(10) are reserved for special files, and are nev-
 er allocated; the first bit in the i-node free map refers
 to i-number 41. Therefore the byte number in the i-node
 map for i-node i_ is (i_-41)/8. It is offset (i_-41) (mod
 8) bits from the right; unlike the free map, a "0" bit
 indicates an available i-node.

 I-numbers begin at 1, and the storage for i-nodes begins
 at block 2. Also, i-nodes are 32 bytes long, so 16 of
 them fit into a block. Therefore, i-node i_ is located in
 block (i_+31)/16 of the file system, and begins
 32.((i_+31)(mod 16)) bytes from its start.

 There is always one file system which is always mounted;
 in standard UNIX it resides on the RF disk. This device
 is also used for swapping. On the primary file system
 device, there are several pieces of information following
 that previously discussed. There are two words with the
 calendar time (measured since 00:00 Jan 1, 1972); two
 words with the time spent executing in the system; two
 words with the time spent waiting for I/O on the RF and
 RK disks; two words with the time spent executing in a
 user’s core; one byte with the count of errors on the RF
 disk; and one byte with the count of errors on the RK
 disk. All the times are measured in sixtieths of a sec-
 ond.

 I-node 41(10) is reserved for the root directory of the
 file system. No i-numbers other than this one and those

 - 1 -

FILE SYSTEM (V) 3/15/72 FILE SYSTEM (V)

 from 1 to 40 (which represent special files) have a
 built-in meaning. Each i-node represents one file. The
 format of an i-node is as follows, where the left column
 represents the offset from the beginning of the i-node:

 0-1 flags (see below)
 2 number of links
 3 user ID of owner
 4-5 size in bytes
 6-7 first indirect block or contents block
 20-21 eighth indirect block or contents block
 22-25 creation time
 26-29 modification time
 30-31 unused

 The flags are as follows:

 100000 i-node is allocated
 040000 directory
 020000 file has been modified (always on)
 010000 large file
 000040 set user ID on execution
 000020 executable
 000010 read, owner
 000004 write, owner
 000002 read, non-owner
 000001 write, non-owner

 The allocated bit (flag 100000) is believed even if the
 i-node map says the i-node is free; thus corruption of
 the map may cause i-nodes to become unallocatable, but
 will not cause active nodes to be reused.

 Byte number n_ of a file is accessed as follows: n_ is di-
 vided by 512 to find its logical block number (say b_) in
 the file. If the file is small (flag 010000 is 0), then
 b_ must be less than 8, and the physical block number cor-
 responding to b_ is the b_th entry in the address portion
 of the i-node.

 Even if the file is large, b_ will be less than 128
 (128*512 = 2^16). The first number in the i-node address
 portion gives the physical block number of the indirect
 block. b_ is doubled to give a byte offset in the indi-
 rect block and the word there found is the physical ad-
 dress of the block corresponding to b_.

 For block b_ in a file to exist, it is not necessary that
 all blocks less than b_ exist. A zero block number either
 in the address words of the i-node or in an indirect
 block indicates that the corresponding block has never
 been allocated. Such a missing block reads as if it con-
 tained all zero words.

 - 2 -

FILE SYSTEM (V) 3/15/72 FILE SYSTEM (V)

BUGS Two blocks are not enough to handle the i- and
 free-storage maps for an RP02 disk pack, which
 contains around 10 million words.

 - 3 -

PASSWD (V) 12/11/72 PASSWD (V)

NAME passwd -- password file

DESCRIPTION p_a_s_s_w_d_ contains for each user the following in-
 formation:

 name (login name, contains no upper case)
 encrypted password
 numerical user ID
 GCOS job number and box number
 initial working directory
 program to use as Shell

 This is an ASCII file. Each field within each
 user’s entry is separated from the next by a
 colon. The job and box numbers are separated by
 a comma. Each user is separated from the next by
 a new-line. If the password field is null, no
 password is demanded; if the Shell field is null,
 the Shell itself is used.

 This file resides in directory /etc. Because of
 the encrypted passwords, it can and does have
 general read permission and can be used, for ex-
 ample, to map numerical user ID’s to names.

SEE ALSO login(I), crypt(III), passwd(I)

 - 1 -

TAP (V) 6/12/72 TAP (V)

NAME tap -- DEC/mag tape formats

DESCRIPTION The DECtape command t_a_p_ and the magtape command
 m_t_ dump and extract files to and from their re-
 spective tape media. The formats of these tapes
 are the same except that magtapes have larger di-
 rectories.

 Block zero of the tape is not used. It is avail-
 able to contain a boot program to be used in a
 stand-alone environment. This has proved valu-
 able for DEC diagnostic programs.

 Blocks 1 through 24 for DECtape (1 through 146
 for magtape) contain a directory of the tape.
 There are 192 (resp. 1168) entries in the direc-
 tory; 8 entries per block; 64 bytes per entry.
 Each entry has the following format:

 path name 32 bytes
 mode 1 byte
 uid 1 byte
 size 2 bytes
 time modified 4 bytes
 tape address 2 bytes
 unused 20 bytes
 check sum 2 bytes

 The path name entry is the path name of the file
 when put on the tape. If the pathname starts
 with a zero word, the entry is empty. It is at
 most 32 bytes long and ends in a null byte.
 Mode, uid, size and time modified are the same as
 described under i-nodes (see file system (V)) The
 tape address is the tape block number of the
 start of the contents of the file. Every file
 starts on a block boundary. The file occupies
 (size+511)/512 blocks of continuous tape. The
 checksum entry has a value such that the sum of
 the 32 words of the directory entry is zero.

 Blocks 25 (resp. 147) on are available for file
 storage.

 A fake entry (see mt(I), tap(I)) has a size of
 zero.

SEE ALSO filesystem(V), mt(I), tap(I)

 - 1 -

UTMP (V) 3/15/72 UTMP (V)

NAME /tmp/utmp -- user information

DESCRIPTION This file allows one to discover information
 about who is currently using UNIX. The file is
 binary; each entry is 16(10) bytes long. The
 first eight bytes contain a user’s login name or
 are null if the table slot is unused. The low
 order byte of the next word contains the last
 character of a typewriter name. The next two
 words contain the user’s login time. The last
 word is unused.

 This file resides in directory /tmp.

SEE ALSO /etc/init, which maintains the file;
 who(I), which interprets it.

 - 1 -

WTMP (V) 3/15/72 WTMP (V)

NAME /tmp/wtmp -- user login history

DESCRIPTION This file records all logins and logouts. Its
 format is exactly like utmp(V) except that a null
 user name indicates a logout on the associated
 typewriter, and the typewriter name ’x’ indicates
 that UNIX was rebooted at that point.

 Wtmp is maintained by login(I) and init(VII).
 Neither of these programs creates the file, so if
 it is removed record-keeping is turned off.

 This file resides in directory /tmp.

SEE ALSO init(VII), login(I), acct(VIII), swtmp(VIII)

 - 1 -

BC (VI) 6/12/72 BC (VI)

NAME bc -- B interpreter

SYNOPSIS b_c_ [-_c_] sfile1._b_ ... ofile1 ...

DESCRIPTION b_c_ is the UNIX B interpreter. It accepts three
 types of arguments:

 Arguments whose names end with ".b" are assumed
 to be B source programs; they are compiled, and
 the object program is left on the file sfile1.o
 (i.e. the file whose name is that of the source
 with ".o" substituted for ".b").

 Other arguments (except for "-c") are assumed to
 be either loader flag arguments, or B-compatible
 object programs, typically produced by an earlier
 b_c_ run, or perhaps libraries of B-compatible rou-
 tines. These programs, together with the results
 of any compilations specified, are loaded (in the
 order given) to produce an executable program
 with name a_._o_u_t_.

 The "-c" argument suppresses the loading phase,
 as does any syntax error in any of the routines
 being compiled.

 The language itself is described in [1].

 The future of B is uncertain. The language has
 been totally eclipsed by the newer, more power-
 ful, more compact, and faster language C.

FILES file.b input file
 a.out loaded output
 b.tmp1 temporary (deleted)
 b.tmp2 temporary (deleted)
 /usr/lang/bdir/b[ca] translator
 /usr/lang/bdir/brt[12] runtime initialization
 /usr/lib/libb.a builtin functions, etc.
 /usr/lang/bdir/bilib.a interpreter library

SEE ALSO [1] K. Thompson; MM-72-1271-1; Users’ Reference
 to B.
 cc(I)

DIAGNOSTICS see [1].

BUGS Certain external initializations are illegal.
 (In particular: strings and addresses of exter-
 nals.)

 - 1 -

BJ (VI) 3/15/72 BJ (VI)

NAME bj -- the game of black jack

SYNOPSIS /usr/games/bj

DESCRIPTION
 b_j_ is a serious attempt at simulating the dealer in the
 game of black jack (or twenty-one) as might be found in
 Reno. The following rules apply:

 The bet is $2 every hand.

 A player ’natural’ (black jack) pays $3. A dealer
 natural loses $2. Both dealer and player naturals is
 a ’push’ (no money exchange).

 If the dealer has an ace up, the player is allowed to
 make an ’insurance’ bet against the chance of a dealer
 natural. If this bet is not taken, play resumes as
 normal. If the bet is taken, it is a side bet where
 the player wins $2 if the dealer has a natural and
 loses $1 if the dealer does not.

 If the player is dealt two cards of the same value, he
 is allowed to ’double’. He is allowed to play two
 hands, each with one of these cards. (The bet is dou-
 bled also; $2 on each hand.)

 If a dealt hand has a total of ten or eleven, the
 player may ’double down’. He may double the bet ($2
 to $4) and receive exactly one more card on that hand.

 Under normal play, the player may ’hit’ (draw a card)
 as long as his total is not over twenty-one. If the
 player ’busts’ (goes over twenty-one), the dealer wins
 the bet.

 When the player ’stands’ (decides not to hit), the
 dealer hits until he attains a total of seventeen or
 more. If the dealer busts, the player wins the bet.

 If both player and dealer stand, the one with the
 largest total wins. A tie is a push.

 The machine deals and keeps score. The following ques-
 tions will be asked at appropriate times. Each question
 is answered by y_ followed by a new line for ’yes’, or
 just new line for ’no’.

 ? (means, "do you want a hit?")
 Insurance?
 Double down?

 Every time the deck is shuffled, the dealer so states and
 the ’action’ (total bet) and ’standing’ (total won or

 - 1 -

BJ (VI) 3/15/72 BJ (VI)

 loss) is printed. To exit, hit the interrupt key (DEL)
 and the action and standing will be printed.

 - 2 -

PTX (VI) 3/15/72 PTX (VI)

NAME ptx -- permuted index

SYNOPSIS p_t_x_ input output

DESCRIPTION p_t_x_ generates a permuted index from file i_n_p_u_t_ on
 file o_u_t_p_u_t_. It has three phases: the first does
 the permutation, generating one line for each
 keyword in an input line. The keyword is rotated
 to the front. The permuted file is then sorted.
 Finally the sorted lines are rotated so the key-
 word comes at the middle of the page.

 i_n_p_u_t_ should be edited to remove useless lines.
 The following words are suppressed: "a", "and",
 "as", "is", "for", "of", "on", "or", "the", "to",
 "up".

 The index for this manual was generated using
 p_t_x_.

FILES --

SEE ALSO sort(I)

DIAGNOSTICS some

BUGS --

 - 1 -

YACC (VI) 1/20/73 YACC (VI)

NAME yacc -- yet another compiler compiler

SYNOPSIS _/_c_r_p_/_s_c_j_/_y_a_c_c [<grammar]

DESCRIPTION Yacc converts a context-free grammar into a set
 of tables for a simple automaton which executes
 an LR(1) parsing algorithm. The tables are pro-
 vided in readable form on the standard output and
 in b-compiler format on file actn.b; the program
 /crp/scj/bpar.b will parse strings using the
 actn.b file.

 If your grammar is too big for yacc, you may try
 /crp/scj/bigyacc, some of whose size limits are
 larger, and others smaller.

FILES actn.b output tables
 actn.tmp temporary storage
 Note that these files are created in the invok-
 er’s directory. The file actn.tmp is only creat-
 ed by /crp/scj/bigyacc (see above).

SEE ALSO Yacc manual, by scj (available from ek); "LR
 Parsing", by A. V. Aho and S. C. Johnson, to be
 published.

DIAGNOSTICS There are various diagnostics, but only one can
 be obtained in each run.

BUGS The maximum number of terminal and non-terminal
 symbols is 50 each, and this is not checked.
 There are undoubtedly other bugs too.

 - 1 -

ASCII (VII) 6/12/72 ASCII (VII)

NAME ascii -- map of ASCII character set

SYNOPSIS c_a_t_ /_u_s_r_/_p_u_b_/_a_s_c_i_i_

DESCRIPTION a_s_c_i_i_ is a map of the ASCII character set, to be
 printed as needed. It contains:

000 nul	001 soh	002 stx	003 etx	004 eot	005 enq	006 ack	007 bel	
010 bs	011 ht	012 nl	013 vt	014 np	015 cr	016 so	017 si	
020 dle	021 dc1	022 dc2	023 dc3	024 dc4	025 nak	026 syn	027 etb	
030 can	031 em	032 sub	033 esc	034 fs	035 gs	036 rs	037 us	
040 sp	041 !	042 "	043 #	044 $	045 %	046 &	047 ’	
050 (051)	052 *	053 +	054 ,	055 -	056 .	057 /	
060 0	061 1	062 2	063 3	064 4	065 5	066 6	067 7	
070 8	071 9	072 :	073 ;	074 <	075 =	076 >	077 ?	
100 @	101 A	102 B	103 C	104 D	105 E	106 F	107 G	
110 H	111 I	112 J	113 K	114 L	115 M	116 N	117 O	
120 P	121 Q	122 R	123 S	124 T	125 U	126 V	127 W	
130 X	131 Y	132 Z	133 [134 \	135]	136 ^	137 _	
140 ‘	141 a	142 b	143 c	144 d	145 e	146 f	147 g	
150 h	151 i	152 j	153 k	154 l	155 m	156 n	157 o	
160 p	161 q	162 r	163 s	164 t	165 u	166 v	167 w	
170 x	171 y	172 z	173 {	174		175 }	176 ˜	177 del

FILES found in /usr/pub

 - 1 -

DPD (VII) 3/15/72 DPD (VII)

NAME dpd -- spawn data phone daemon

SYNOPSIS /_e_t_c_/_d_p_d_

DESCRIPTION d_p_d_ is the 201 data phone daemon. It is designed
 to submit jobs to the Honeywell 6070 computer via
 the gerts interface.

 d_p_d_ uses the directory /_u_s_r_/_d_p_d_. The file l_o_c_k_
 in that directory is used to prevent two daemons
 from becoming active. After the daemon has suc-
 cessfully set the lock, it forks and the main
 path exits, thus spawning the daemon. /_u_s_r_/_d_p_d_
 is scanned for any file beginning with d_f_. Each
 such file is submitted as a job. Each line of a
 job file must begin with a key character to spec-
 ify what to do with the remainder of the line

 S_ directs dpd to generate a unique snumb card.
 This card is generated by incrementing the
 first word of the file /_u_s_r_/_d_p_d_/_s_n_u_m_b_ and con-
 verting that to decimal concatenated with the
 station ID.

 L_ specifies that the remainder of the line is
 to be sent as a literal.

 B_ specifies that the rest of the line is a
 file name. That file is to be sent as binary
 cards.

 F_ is the same as B_ except a form feed is
 prepended to the file.

 U_ specifies that the rest of the line is a
 file name. After the job has been transmit-
 ted, the file is unlinked.

 Any error encountered will cause the daemon to
 drop the call, wait up to 20 minutes and start
 over. This means that an improperly constructed
 d_f_ file may cause the same job to be submitted
 every 20 minutes.

 While waiting, the daemon checks to see that the
 l_o_c_k_ file still exists. If the l_o_c_k_ is gone, the
 daemon will exit.

FILES /dev/dn0, /dev/dp0, /usr/dpd/*

SEE ALSO opr(I)

DIAGNOSTICS --

 - 1 -

DPD (VII) 3/15/72 DPD (VII)

BUGS --

 - 2 -

12/11/72 GETTY (VII)

NAME getty -- set typewriter mode and get user’s name

SYNOPSIS /etc/getty

DESCRIPTION
 g_e_t_t_y_ is invoked by init (VII) immediately after a type-
 writer is opened following a dial-in. The user’s login
 name is read and the login(I) command is called with this
 name as an argument. While reading this name g_e_t_t_y_ at-
 tempts to adapt the system to the speed and type of ter-
 minal being used.

 g_e_t_t_y_ initially sets the speed of the interface to 150
 baud, specifies that raw mode is to be used (break on ev-
 ery character), that echo is to be suppressed, and either
 parity allowed. It types the "login:" message (which in-
 cludes the characters which put the 37 Teletype terminal
 into full-duplex and unlock its keyboard). Then the us-
 er’s name is read, a character at a time. If a null
 character is received, it is assumed to be the result of
 the user pushing the "break" ("interrupt") key. The
 speed is then changed to 300 baud and the "login:" is
 typed again, this time with the appropriate sequence
 which puts a GE TermiNet 300 into full-duplex. This se-
 quence is acceptable to other 300 baud terminals also.
 If a subsequent null character is received, the speed is
 changed again. The general approach is to cycle through
 a set of speeds in response to null characters caused by
 breaks. The sequence at this installation is 150, 300,
 and 134.5 baud.

 Detection of IBM 2741s is accomplished while the speed is
 set to 150 baud. The user sends a 2741 style "eot" char-
 acter by pushing the attention key or by typing return;
 at 150 baud, this character looks like the ascii "˜"
 (174988). Upon receipt of the "eot", the system is set
 to operate 2741s and a "login: " message is typed.

 The user’s name is terminated by a new-line or carriage-
 return character. The latter results in the system being
 set to to treat carriage returns appropriately (see
 stty(II)).

 The user’s name is scanned to see if it contains any low-
 er-case alphabetic characters; if not, and if the name is
 nonempty, the system is told to map any future upper-case
 characters into the corresponding lower-case characters.
 Thus UNIX is usable from upper-case-only terminals.

 Finally, login is called with the user’s name as argu-
 ment.

FILES --

 - 1 -

12/11/72 GETTY (VII)

SEE ALSO init(VII), login(I), stty(II)

 - 2 -

GLOB (VII) 6/15/72 GLOB (VII)

NAME glob -- generate command arguments

SYNOPSIS /etc/glob

DESCRIPTION g_l_o_b_ is used to expand arguments to the shell
 containing "*", ’[’, or "?". It is passed the
 argument list containing the metacharacters; g_l_o_b_
 expands the list and calls the command itself.
 The actions of g_l_o_b_ are detailed in the Shell
 writeup.

FILES found in /etc/glob

SEE ALSO sh(I)

DIAGNOSTICS "No match", "No command", "No directory"

BUGS If any of original command line, even the quoted
 metacharacters are expanded.

 g_l_o_b_ gives the "No match" diagnostic only if no
 arguments at all result. This is never the case
 if there is any argument without a metacharacter.

 - 1 -

GREEK (VII) 10/31/72 GREEK (VII)

NAME greek -- graphics for extended ascii type box

SYNOPSIS c_a_t_ /_u_s_r_/_p_u_b_/_g_r_e_e_k_

DESCRIPTION g_r_e_e_k_ gives the mapping from ascii to the "shift
 out" graphics in effect between SO and SI on mod-
 el 37 teletypes with a 128-character type box.
 It contains:

 alpha A A | beta B B | gamma \ \
 GAMMA G G | delta D D | DELTA W W
 epsilon S S | zeta Q Q | eta N N
 theta T T | THETA O O | lambda L L
 LAMBDA E E | mu M M | nu @ @
 xi X X | pi J J | PI P P
 rho K K | sigma Y Y | SIGMA R R
 tau I I | phi U U | PHI F F
 psi V V | PSI H H | omega C C
 OMEGA Z Z | nabla [[| not _ _
 partial]] | integral ^ ^ |

FILES --

SEE ALSO ascii (VII)

DIAGNOSTICS --

BUGS --

 - 1 -

INIT (VII) 6/15/72 INIT (VII)

NAME init -- process control initialization

SYNOPSIS /etc/init

DESCRIPTION
 i_n_i_t_ is invoked inside UNIX as the last step in the boot
 procedure. Generally its role is to create a process for
 each typewriter on which a user may log in.

 First, i_n_i_t_ checks to see if the console switches contain
 173030. (This number is likely to vary between systems.)
 If so, the console typewriter t_t_y_ is opened for reading
 and writing and the shell is invoked immediately. This
 feature is used to bring up a test system, or one which
 does not contain DC-11 communications interfaces. When
 the system is brought up in this way, the g_e_t_t_y_ and l_o_g_i_n_
 routines mentioned below and described elsewhere are not
 needed.

 Otherwise, i_n_i_t_ does some housekeeping: the mode of each
 DECtape file is changed to 17 (in case the system crashed
 during a t_a_p_ command); directory /usr is mounted on the
 RK0 disk; directory /sys is mounted on the RK1 disk. Al-
 so a data-phone daemon is spawned to restart any jobs be-
 ing sent.

 Then i_n_i_t_ forks several times to create a process for
 each typewriter mentioned in an internal table. Each of
 these processes opens the appropriate typewriter for
 reading and writing. These channels thus receive file
 descriptors 0 and 1, the standard input and output.
 Opening the typewriter will usually involve a delay,
 since the o_p_e_n_ is not completed until someone is dialled
 in (and carrier established) on the channel. Then the
 process executes the program /e_t_c_/g_e_t_t_y_ (q.v.). g_e_t_t_y_
 will read the user’s name and invoke l_o_g_i_n_ (q.v.) to log
 in the user and execute the shell.

 Ultimately the shell will terminate because of an end-of-
 file either typed explicitly or generated as a result of
 hanging up. The main path of i_n_i_t_, which has been wait-
 ing for such an event, wakes up and removes the appropri-
 ate entry from the file u_t_m_p_, which records current
 users, and makes an entry in w_t_m_p_, which maintains a his-
 tory of logins and logouts. Then the appropriate type-
 writer is reopened and g_e_t_t_y_ reinvoked.

FILES /dev/tap?, /dev/tty, /dev/tty?, /tmp/utmp,
 /tmp/wtmp

SEE ALSO login(I), login(VII), getty(VII), sh(I), dpd(VII)

DIAGNOSTICS none possible

 - 1 -

INIT (VII) 6/15/72 INIT (VII)

BUGS none possible

 - 2 -

MSH (VII) 6/15/72 MSH (VII)

NAME msh -- mini-shell

SYNOPSIS /etc/msh

DESCRIPTION m_s_h_ is a heavily simplified version of the Shell.
 It reads one line from the standard input file,
 interprets it as a command, and calls the com-
 mand.

 The mini-shell supports few of the advanced fea-
 tures of the Shell; none of the following charac-
 ters is special:

 > < $ \ ; &

 However, "*", "[", and "?" are recognized and
 g_l_o_b_ is called. The main use of m_s_h_ is to pro-
 vide a command-executing facility for various in-
 teractive sub-systems.

FILES --

SEE ALSO sh(I), glob(VII)

DIAGNOSTICS "?"

BUGS --

 - 1 -

TABS (VII) 6/15/72 TABS (VII)

NAME tabs -- set tab stops

SYNOPSIS cat /usr/pub/tabs

DESCRIPTION When printed on a suitable terminal, this file
 will set tab stops every 8 columns. Suitable
 terminals include the Teletype model 37 and the
 GE TermiNet 300.

 These tab stop settings are desirable because
 UNIX assumes them in calculating delays.

FILES --

SEE ALSO --

DIAGNOSTICS --

BUGS --

 - 1 -

VSP (VII) 2/2/73 VSP (VII)

NAME vsp -- voice synthesizer code

SYNOPSIS cat /usr/pub/vsp

DESCRIPTION v_s_p_ contains a list of phonemes understood by the
 voice synthesizer on device v_t_. Phonemes are
 usually written in the form

 comma inflection phoneme

 The inflection and the phoneme codes are or-ed
 together. The phoneme codes are as follows (num-
 bers in octal).

 0 = 300 strong inflection p = 32 p_enny p_ound
 1 = 200 a0 = 33 co_ntact ca_r
 2 = 100 a1 = 52 co_nnect
 3 = 000 weak inflection ai = 37 na_me ca_me
 aj = 71 na_mely
 aw = 02 a_w_ful la_w_ s = 40 s_even s_ix
 ie = 03 ze_r_o d = 41 d_o d_iet
 e0 = 04 e_nter me_t f = 42 f_our f_ive
 e1 = 76 se_ven g = 43 g_et g_rand
 e2 = 77 seve_n h = 44 h_ello h_ow
 er = 05 weathe_r_ j = 45 j_udge edg_e
 th = 06 t_h_ree t_h_ick k = 46 c_ame lock_
 dh = 07 t_h_is t_h_en l = 47 hel_l_o l_ight
 yu = 27 u_se you_ oo = 50 lo_o_k bo_o_k
 iu = 10 u_nite ou = 51 go_o_d sho_u_d
 ju = 11 ne_w yo_u ng = 53 rin_g_ an_g_le
 o0 = 31 o_nly no_ z = 55 z_ero haz_y
 o1 = 12 hello_ sh = 56 s_h_ow s_h_ip
 o2 = 13 no_tice ch = 57 c_h_air c_h_ime
 u0 = 14 bu_t mu_st v = 60 sev_en ev_en
 u1 = 15 u_ncle b = 61 b_all b_ed
 u2 = 16 stirru_p n = 62 n_in_e seven_
 u3 = 34 app_le ab_le m = 63 m_ile m_en
 ae = 21 ca_t sa_t iy = 66 li_e_
 ea = 20 a_ntenna zh = 70 az_ure pleas_ure
 w = 22 w_on w_ish ih = 72 stati_o_n conditi_o_n
 ee = 23 thre_e_ ay = 36 may_ lay_
 r = 24 r_adio r_adar_
 t = 25 t_wo t_ime -0 = 35 long space
 ey = 26 sixty_ eighty_ -1 = 17
 i0 = 30 si_x mi_x -2 = 01
 i1 = 64 i_nept i_nside -3 = 74 short delay
 i2 = 65 crypti_c stati_c

SEE ALSO speak(I), vt(IV)

 - 1 -

20BOOT (VIII) 1/25/73 20BOOT (VIII)

NAME 20boot -- install new 11/20 system

SYNOPSIS 2_0_b_o_o_t_ [x_]

DESCRIPTION This shell command file copies the current ver-
 sion of the 11/20 program used to run the VT01
 display onto the /dev/vt0 file.

 If no argument is given, the 11/20 program should
 be executing but idle; the 11/20 program is sent
 preceded by a "reboot" command. If an argument
 is given, the 11/20 should have been restarted at
 its ROM location 777300.

FILES /dev/vt0;
 /sys/mdec/20.o (11/20 program)

SEE ALSO vt0 (IV)

DIAGNOSTICS --

 - 1 -

ACCT (VIII) 1/20/73 ACCT (VIII)

NAME acct -- login accounting

SYNOPSIS a_c_c_t_ [-_w_ wtmp] [-_p_] [-_d_] people

DESCRIPTION a_c_c_t_ produces a printout giving connect time for
 each user who has logged in during the life of
 the current w_t_m_p_ file. A total is also produced.
 -_w_ is used to specify an alternate wtmp file. -_p_
 prints individual totals; without this option,
 only totals are printed. -_d_ causes a printout
 for each midnight to midnight period. The p_e_o_p_l_e_
 argument will limit the printout to only the
 specified login names. If no wtmp file is given,
 /_u_s_r_/_a_d_m_/_w_t_m_p_ is used.

FILES /usr/adm/wtmp

SEE ALSO init(VII), login(I), wtmp(V).

DIAGNOSTICS "Cannot open ’wtmp’" if argument is unreadable.

BUGS --

 - 1 -

BOOT PROCEDURES (VIII) 2/6/73 BOOT PROCEDURES (VIII)

NAME bos, maki, vcboot, msys, e_t_ a_l_.

DESCRIPTION
 On the RF disk, the highest 16K words are reserved for
 stand-alone programs. These 16K words are allocated as
 follows:

 bos (1K)
 Warm UNIX (7K)
 Cold UNIX (8K)

 The program b_o_s_ (Bootstrap Operating System) examines the
 console switches and executes one of several internal
 programs depending on the setting. The following set-
 tings are currently recognized:

 ??? Will read Warm UNIX from the RF into core loca-
 tion 0 and transfer to 600.

 1 Will read Cold UNIX from the RF into core loca-
 tion 0 and transfer to 600.

 10 Will dump all of memory from core location 0 onto
 DECtape drive 7 and then halt.

 20 Will read 256 words from RK0 into core 0 and
 transfer to zero. This is the procedure to boot
 DOS from an RK.

 40 This is the same as 10 above, but instead of
 halting, UNIX warm is loaded.

 0 Will load a standard UNIX binary paper tape into
 core location 0 and transfer to 0.

 77500 Will load the standard DEC absolute and binary
 loaders and transfer to 77500.

 All manual methods of booting the system involve manipu-
 lation of the console switches. In order for this to be
 possible, the panel must be unlocked and the machine must
 be halted. Also, remember that at the time UNIX comes
 up, the console switches must contain 773030 for a sin-
 gle-user system; anything else gives a multi-user system.

 There are four temperatures of boots. They are:

 Hot boot: restart the system without refreshing its
 code, that is simply by transferring to its start.
 The only use for this procedure is if the system has
 been patched and one doesn’t wish to redo the patch-
 es. The procedure is:

 600 in switches Load address

 - 1 -

BOOT PROCEDURES (VIII) 2/6/73 BOOT PROCEDURES (VIII)

 (773030 in switches for single-user system)
 start

 Warm boot: refresh system code from the RF disk, but
 the "panic" routine must be in core. Best for gener-
 al use if it works, since outstanding I/O is cleaned
 up. Procedure:

 602 in switches load address
 (773030 in switches for single-user system)
 start (flushes any I/O, then executes b_o_s_)

 Cool boot: RF disk is OK, but nothing in core. Pro-
 cedure:

 UTIL DECtape on drive 0 773030 in
 switches load address (602 in switch-
 es for multi-user system) start type
 "boot" on console tty to load b_o_s_

 Cold boot: nothing in core, nothing on RF. Best to
 have an expert around for this one. Procedure:

 INIT DECtape on drive 0 773030 in
 switches load address 1 in switches
 start (machine halts. last chance to
 preserve RF!) 773030 in switches
 continue (reads in basic files)

 UNIX is then up, but for various reasons, one should
 do a warm boot (single user) right away. At this
 point also, one might consider whether the INIT tape
 UNIX is the latest version. If there is reason for
 doubt, mount the /sys disk pack, change to directory
 /sys/sys, do "msys u unix", and reboot. Then get the
 /bin-/etc-/lib tape which contains the rest of of the
 RF disk, and do an "mt x". Conceivably, "create er-
 rors" due to lack of some directories will occur;
 make the directories, then try again. Set the date
 correctly; the system starts off at time 0.

 At this point UNIX is in full operation and can be
 rebooted for a multi-user system.

 Here is what happens during a cold boot: the INIT tape
 contains a program called _v_c_b_o_o_t_. The ROM program reads
 vcboot from the tape into core location 0 and transfers
 to it. vcboot then reads 16K words from the DECtape
 (blocks 1-32) and copies the data to the highest 16K
 words of the RF. Thus this initializes the read-only
 part of the RF. vcboot then reads in b_o_s_ and executes
 it. b_o_s_ reads in Cold UNIX and executes that. Cold UNIX
 halts for a last chance before it completely initializes
 the RF file system. When continue is pressed, Cold UNIX

 - 2 -

BOOT PROCEDURES (VIII) 2/6/73 BOOT PROCEDURES (VIII)

 initializes the RF. It then reads the DECtape for ini-
 tialization files starting from block 33. Normal opera-
 tion then commences with the execution of "/etc/init".

 The INIT tape is made by the program m_a_k_i_ running under
 UNIX. m_a_k_i_ writes v_c_b_o_o_t_ on block 0 of _/_d_e_v_/_t_a_p_7_. It
 then copies the RF 16K words (using _/_d_e_v_/_r_f_0_) onto blocks
 1 thru 32. It has internally a list of files to be
 copied from block 33 on. This list follows:

 /etc/init
 /bin/chmod
 /bin/date
 /bin/login
 /bin/ls
 /bin/mkdir
 /etc/mount
 /bin/sh
 /bin/tap
 /bin/mt

 Thus this is the set of programs available after a cold
 boot. i_n_i_t_ and s_h_ are mandatory. For multi-user UNIX,
 g_e_t_t_y_ and l_o_g_i_n_ are also necessary. m_k_d_i_r_ is necessary
 due to a bug in t_a_p_. m_t_, t_a_p_ and m_o_u_n_t_ are useful to
 bring in new files. As soon as possible, d_a_t_e_ should be
 done. That leaves l_s_ and c_h_m_o_d_ as frosting.

 The last link in this incestuous daisy chain is the pro-
 gram m_s_y_s_.

 m_s_y_s_ char file

 will copy the file f_i_l_e_ onto the RF read only slot speci-
 fied by the character c_h_a_r_. Char is taken from the fol-
 lowing set:

 b_ bos
 u_ Warm UNIX
 1_ Cold UNIX

FILES /dev/rf0, /dev/tap?

SEE ALSO init(VII), tap(I), sh(I), mkdir(I)

DIAGNOSTICS --

BUGS This section is very configuration dependent.

 - 3 -

CHECK (VIII) 1/20/73 CHECK (VIII)

NAME check -- file system consistency check

SYNOPSIS c_h_e_c_k_ [filesystem [blockno918 ...]]

DESCRIPTION c_h_e_c_k_ will examine a file system, build a bit map
 of used blocks, and compare this bit map against
 the bit map maintained on the file system. If
 the file system is not specified, a check of all
 of the normally mounted file systems is per-
 formed. Output includes the number of files on
 the file system, the number of these that are
 ’large’, the number of indirect blocks, the num-
 ber of used blocks, and the number of free
 blocks.

 c_h_e_c_k_ works by examining the i-nodes on the file
 system and is entirely independent of its direc-
 tory hierarchy. The file system may be, but need
 not be, mounted.

FILES /dev/rf?, /dev/rk?, /dev/rp?

SEE ALSO find(I), ds(I)

DIAGNOSTICS Diagnostics are produced for blocks missing, du-
 plicated, and bad block addresses. Diagnostics
 are also produced for block numbers passed as pa-
 rameters. In each case, the block number, i-num-
 ber, and block class (i_ = inode, x_ indirect, f_
 free) is printed.

BUGS The checking process is two pass in nature. If
 checking is done on an active file system, extra-
 neous diagnostics may occur.

 - 1 -

CHK (VIII) 1/20/73 CHK (VIII)

NAME chk -- check + dcheck

SYNOPSIS chk

DESCRIPTION This command file does a c_h_e_c_k_ and a d_c_h_e_c_k_ of
 all of the normally mounted file systems.

FILES /dev/[fkp]*

SEE ALSO check (VIII), dcheck (VIII)

DIAGNOSTICS see "SEE ALSO"

 - 1 -

CLRI (VIII) 1/20/73 CLRI (VIII)

NAME clri -- clear i-node

SYNOPSIS clri i-number [file system]

DESCRIPTION c_l_r_i_ writes zeros on the 32 bytes occupied by the
 i-node numbered _i_-_n_u_m_b_e_r_. If the _f_i_l_e _s_y_s_t_e_m ar-
 gument is given, the i-node resides on the given
 device, otherwise on a default file system. The
 file system argument must be a special file name
 referring to a device containing a file system.

 After c_l_r_i_, any blocks in the affected file will
 show up as "missing" in a c_h_e_c_k_ of the file sys-
 tem.

 Read and write permission is required on the
 specified file system device. The i-node becomes
 allocatable.

 The primary purpose of this routine is to remove
 a file which for some reason appears in no direc-
 tory.

DIAGNOSTICS "error"

 - 1 -

DCHECK (VIII) 1/20/73 DCHECK (VIII)

NAME dcheck -- directory consistency check

SYNOPSIS d_c_h_e_c_k_ [-_l_] [device]

DESCRIPTION d_c_h_e_c_k_ builds an image of the directory hierarchy
 of the specified device by reading all its direc-
 tories (using physical I/O guided by the i-nodes
 on the device). A list entry is made for each
 file encountered. A second pass reads the i-
 nodes and for each file compares the number of
 links specified in its i-node with the number of
 entries actually seen. All discrepancies are
 noted.

 If no device is specified, a default device is
 assumed.

 The argument -_l_ causes a complete listing of the
 file names on the device in i-node order.

FILES /dev/rk?

SEE ALSO check(VIII)

DIAGNOSTICS inconsistent i-numbers, unnamed files, unreach-
 able files, loops in directory "hierarchy".

BUGS Unreachable files and loops are discovered only
 under the "-l" option.

 - 1 -

DLI (VIII) 3/15/72 DLI (VIII)

NAME dli -- load DEC binary paper tapes

SYNOPSIS dli output [input]

DESCRIPTION d_l_i_ will load a DEC binary paper tape into the
 output file. The binary format paper tape is
 read from the input file (/dev/ppt is default.)

FILES /dev/ppt

SEE ALSO --

DIAGNOSTICS "checksum"

BUGS --

 - 1 -

ISTAT (VIII) 1/20/73 ISTAT (VIII)

NAME istat -- get inode status

SYNOPSIS i_s_t_a_t_ [filesystem] inumber1 ...

DESCRIPTION i_s_t_a_t_ gives information about one or more i-nodes
 on the given file system or on /dev/rk0 if no
 file system is given.

 The information is in exactly the same form as
 that for stat(I), except that mode letter "a" is
 used to indicate that the i-node is allocated,
 "u" that it is unallocated.

FILES /etc/uids, /dev/rk0

SEE ALSO stat(I), ls(I) (-l option)

DIAGNOSTICS --

BUGS i_s_t_a_t_ ignores any read error and pretends to give
 status even if the file system is not physically
 present.

 - 1 -

KILL (VIII) 1/20/73 KILL (VIII)

NAME kill -- terminate process with extreme prejudice

SYNOPSIS /_u_s_r_/_a_d_m_/_k_i_l_l_ processnumber

DESCRIPTION After p_s_ (q.v.) has given you the unique ID of a
 process, you can terminate it by this command. A
 core image is produced in the process’s working
 directory.

 Only the super-user can exercise this privilege.

FILES --

SEE ALSO ps (VIII)

DIAGNOSTICS yes

BUGS If the process has executed sys nice (II) and
 there is another process which has not, but which
 loops, the first process cannot be done in prop-
 erly, since it has to be swapped in so as cooper-
 ate in its own murder.

 It would also be nice if ordinary people could
 kill their own processes.

 - 1 -

MOUNT (VIII) 1/20/73 MOUNT (VIII)

NAME mount -- mount file system

SYNOPSIS /_e_t_c_/_m_o_u_n_t_ special file

DESCRIPTION m_o_u_n_t_ announces to the system that a removable
 file system is present on the device correspond-
 ing to special file s_p_e_c_i_a_l_ (which must refer to
 a disk or possibly DECtape). The f_i_l_e_ must exist
 already; it becomes the name of the root of the
 newly mounted file system.

FILES --

SEE ALSO umount(VIII)

DIAGNOSTICS "?", if the special file is already in use, can-
 not be read, or if f_i_l_e_ does not exist.

BUGS Should be usable only by the super-user. Mount-
 ing file systems full of garbage can crash the
 system.

 - 1 -

PS (VIII) 1/20/73 PS (VIII)

NAME ps -- process status

SYNOPSIS /usr/adm/ps [-_x_l_t_]

DESCRIPTION
 p_s_ prints certain facts about active processes. The in-
 formation is columnar and consists of:

 The (numerical) ID of the user associated with the
 process;

 The last character of the control typewriter of the
 process or "x" if there is no control typewriter; "x"
 lines are suppressed unless the "x" option is given.

 The number of 512-byte disk blocks holding the core
 image of the process;

 The process’s unique ID (only with "l" option)

 The number of hours (mod 100) and minutes of system,
 disk, and user-process time accumulated by the process
 and all its terminated descendants (only with "t" op-
 tion)

 An educated guess as to the command line which caused
 the process to be created.

 Some caveats:

 The guess as to the command name and arguments is ob-
 tained by examining the process’s stack. The process is
 entitled to destroy this information. Also, only pro-
 cesses whose core images are on disk have visible names.
 The p_s_ command in particular does not, nor does any other
 process which happens to be in core at the same time. p_s_
 tries to overcome this limitation by spawning a subpro-
 cess designed to take up the other core slot, and is usu-
 ally successful. Because p_s_ examines a dynamically
 changing data structure, it can produce incorrect re-
 sults, for example if a process’s core image moves be-
 tween the time p_s_ gets its disk address and reads its
 stack.

 Besides its utility for simple spying, p_s_ is the only
 plausible way to find the process number of someone you
 are trying to kill (VIII).

FILES /dev/rf0, /sys/sys/unix (to get magic numbers).

SEE ALSO kill (VIII)

DIAGNOSTICS "Bad RF", if a bad swap address turns up; various
 missing-file diagnostics.

 - 1 -

PS (VIII) 1/20/73 PS (VIII)

BUGS As described.

 - 2 -

SALV (VIII) 1/20/73 SALV (VIII)

NAME salv -- file system salvage

SYNOPSIS /_e_t_c_/_s_a_l_v_ filesystem [-_a_k_f_s_]

DESCRIPTION
 s_a_l_v_ will place a given file system in a consistent state
 with almost no loss of information. This is the first
 step in putting things together after a bad crash. Salv
 performs the following functions:

 A valid free list is constructed.

 The previous step is always performed; the following
 steps are performed only if the "a" option is given. If
 the file system’s only defect is missing blocks, "a"
 should not be specified.

 All bad pointers in the file system are zeroed.

 All duplicate pointers to the same block are resolved
 by changing one of the pointers to point at a new
 block containing a copy of the data.

 Inodes (not directory entries) for special files are
 generated (mode 16).

 Files whose size is too large for the number of blocks
 they contain (after bad pointers are zeroed) have
 their size revised downward.

 The file system should be unmounted while it is being
 salvaged. In cases of extreme need the permanently
 mounted file system may be salvaged; in such a case the
 system must be rebooted before it has a chance to write
 out the old, bad super-block.

 The "k", "f", and "s" options tell salv what magic num-
 bers to use to generate the size of the free list and the
 i-node map. "k" is default (RK disk); "f" is RF; "s" is
 RK with swap space on it. If salv is to be used away
 from the mother system its code should be cheked to veri-
 fy the numbers.

 After a salv, files may be safely created and removed
 without causing more trouble. If the "a" option had to
 be used, a dcheck (VIII) should be done to find the de-
 gree of the damage to the hierarchy.

FILES /dev/rk0

SEE ALSO check(I), ds(I)

DIAGNOSTICS --

 - 1 -

SALV (VIII) 1/20/73 SALV (VIII)

BUGS In only one (known) way does s_a_l_v_ destroy infor-
 mation: if some random block appears to be an in-
 direct block for a file, all "bad pointers" (for
 example, ASCII text) in it will be zeroed. If
 the block also appears in another file, it may be
 scribbled on before it is copied.

 - 2 -

SU (VIII) 1/20/73 SU (VIII)

NAME su -- become privileged user

SYNOPSIS s_u_

DESCRIPTION su allows one to become the super-user, who has
 all sorts of marvelous (and correspondingly dan-
 gerous) powers. In order for su to do its magic,
 the user must supply a password. If the password
 is correct, su will execute the shell with the
 UID set to that of the super-user. To restore
 normal UID privileges, type an end-of-file to the
 super-user shell.

 To remind the super-user of his responsibilities,
 the shell substitutes "#" for its usual prompt
 "%".

FILES --

SEE ALSO sh(I)

DIAGNOSTICS "Sorry" if password is wrong

BUGS --

 - 1 -

SWTMP (VIII) 2/11/73 SWTMP (VIII)

NAME swtmp -- update accounting file

SYNOPSIS s_w_t_m_p_

DESCRIPTION This shell sequence concatenates /tmp/wtmp onto
 /usr/adm/wtmp and truncates /tmp/wtmp. It should
 be used before using acct(VIII) and every so of-
 ten in any case if accounting is to be main-
 tained.

FILES /tmp/wtmp, /usr/adm/wtmp

SEE ALSO acct(VIII), wtmp(V)

 - 1 -

TM (VIII) 3/15/72 TM (VIII)

NAME tm -- provide time information

SYNOPSIS t_m_

DESCRIPTION t_m_ is used to provide timing information. Output
 like the following is given:

 tim 371:51:09 2:00.8
 ovh 20:00:33 17.0
 swp 13:43:20 4.6
 dsk 27:14:35 4.5
 idl 533:08:03 1:33.3
 usr 24:53:50 1.2
 der 0, 54 0, 0

 The first column of numbers gives totals in the
 named categories since the last time the system
 was cold-booted; the second column gives the
 changes since the last time t_m_ was invoked. The
 top left number is badly truncated and should be
 ignored. o_v_h_ is time spent executing in the sys-
 tem; s_w_p_ is time waiting for swap I/O; d_s_k_ is
 time spent waiting for file system disk I/O; i_d_l_
 is idle time; u_s_r_ is user execution time; d_e_r_ is
 RF disk error count (left number) and RK disk er-
 ror count (right number).

FILES /dev/rf0 (for absolute times); /tmp/ttmp for dif-
 ferential timing history.

SEE ALSO time(I), file system(V)

DIAGNOSTICS --

BUGS --

 - 1 -

UMOUNT (VIII) 1/20/73 UMOUNT (VIII)

NAME umount -- dismount file system

SYNOPSIS /_e_t_c_/_u_m_o_u_n_t_ special

DESCRIPTION u_m_o_u_n_t_ announces to the system that the removable
 file system previously mounted on special file
 s_p_e_c_i_a_l_ is to be removed.

 The user must take care not only that all I/O ac-
 tivity on the file system has ceased, but that no
 one has his current directory on it.

 Only the super-user may issue this command.

FILES --

SEE ALSO mount(VIII)

DIAGNOSTICS "?"

BUGS This command is not, in fact, restricted to the
 super-user.

 - 1 -

	Preface to the Third Edition
	Introduction to this manual
	How to get started
	Table of contents
	Index
	I. Commands
	II. System calls
	III. Subroutines
	IV. Special files
	V. File formats
	VI. User-maintained programs
	VII. Miscellaneous
	VIII. Maintenance

